Central Valley Enhanced

Acoustic Tagging Project

logo





Butte Creek wild spring-run Chinook salmon

2023-2024 Season (PROVISIONAL DATA)


Telemetry Study Template for this study can be found here



1. Project Status


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

library(knitr)
library(kableExtra)
library(lubridate)
library(data.table)
library(ggplot2)
library(RMark)
library(scales)
library(viridis)
library(forcats)
library(reshape2)
library(png)
library(dataRetrieval)
library(rerddap)
library(plotly)

study <- "ButteSink_2024"

detects_study <- fread("study_detections_archive_2024.csv", stringsAsFactors = F,
                       colClasses = c(DateTime_PST = "character", RelDT = "character")) %>%
   filter(Study_ID == study) %>%
   mutate(DateTime_PST = as.POSIXct(DateTime_PST, format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT+8"),
          release_time = as.POSIXct(RelDT, format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT+8")) %>%
   rename(., weight=Weight, length=Length, release_rkm=Rel_rkm, release_location=Rel_loc, river_km=rkm)


latest <- read.csv("latest_download.csv", stringsAsFactors = F)$x

##################################################################################################################
#### TO RUN THE FOLLOWING CODE CHUNKS FROM HERE ON DOWN USING R ERDDAP, UN-COMMENT THESE NEXT 9 LINES OF CODE ####
##################################################################################################################
# cache_delete_all()
# query = paste('&','Study_ID','="', study, '"', sep = '')
# datafile=URLencode(paste("https://oceanview.pfeg.noaa.gov/erddap/tabledap/","FEDcalFishTrack",".csv?",query,sep = ""))
# options(url.method = "libcurl", download.file.method = "libcurl", timeout = 180)
# detects_study <- data.frame(read.csv(datafile,row.names = NULL, stringsAsFactors = F))
# detects_study <- detects_study[-1,]
# detects_study$DateTime_PST <- as.POSIXct(detects_study$local_time, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
# detects_study$release_time <- as.POSIXct(detects_study$release_time, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
# detects_study$river_km <- as.numeric(detects_study$river_km)
##################################################################################################################

Study is complete, all tags are no longer active as of 2024-07-27. All times in Pacific Standard Time.

if (nrow(detects_study) == 0){
   cat("Study has not yet begun  ")
} else {
   if (min(detects_study$release_time) > Sys.time()){
      cat("Study has not yet begun, below data is a placeholder:  ")
   }
   if (min(detects_study$release_time) < Sys.time()){
      cat(paste("Study began on ", min(detects_study$release_time), ", see tagging details below:", sep = ""))
   }

   ######################################
   #### RELEASE GROUPS ASSIGNED HERE ####
   ######################################
   rel_info <- data.frame(release_location = c("Sanborn_Slough_Rel", "North_Weir_Rel", "Butte_Blw_Sanborn_Rel"),
                          Release = c("Butte sink east route", "Butte sink central route", "Butte sink west route"))

   detects_study <- merge(detects_study, rel_info, by.x = "release_location", by.y = "release_location")

   study_tagcodes <- as.data.frame(unique(detects_study[,c("TagCode", "release_time", "weight", "length", "release_rkm",
                                                        "release_location", "Release","Rel_latitude","Rel_longitude")]))

   release_stats <- study_tagcodes %>%
      group_by(Release) %>%
      summarise(First_release_time = min(release_time),
                Last_release_time = max(release_time),
                Number_fish_released = length(unique(TagCode)),
                Release_location = head(release_location, 1),
                Release_rkm = head(release_rkm,1),
                Mean_length = mean(length, na.rm=T),
                Mean_weight = mean(weight, na.rm=T),
                Release_lat = head(Rel_latitude,1),
                Release_lon = head(Rel_longitude,1)) %>%
      mutate(Mean_length = round(Mean_length, 1),
             Mean_weight = round(Mean_weight, 1),
             First_release_time = format(First_release_time, tz = "Etc/GMT+8"),
             Last_release_time = format(Last_release_time, tz = "Etc/GMT+8")) %>%
      arrange(First_release_time)

   release_stats_all <- study_tagcodes %>%
     summarise(First_release_time = min(release_time),
               Last_release_time = max(release_time),
               Number_fish_released = length(unique(TagCode)),
               Release_location = NA,
               Release_rkm = mean(release_rkm,na.rm = T),
               Mean_length = mean(length, na.rm=T),
               Mean_weight = mean(weight, na.rm=T),
               Release_lat = head(Rel_latitude,1),
               Release_lon = head(Rel_longitude,1)) %>%
     mutate(Mean_length = round(Mean_length, 1),
            Mean_weight = round(Mean_weight, 1),
            Release_rkm = round(Release_rkm,1),
            First_release_time = format(First_release_time, tz = "Etc/GMT+8"),
            Last_release_time = format(Last_release_time, tz = "Etc/GMT+8"))
   release_stats <- rbind(release_stats, data.frame(Release = "ALL", release_stats_all))

kable(release_stats[,!names(release_stats)%in% c("Release_lon","Release_lat","release_location")], format = "html", row.names = F) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left")
}
Study began on 2024-04-10 07:35:00, see tagging details below:
Release First_release_time Last_release_time Number_fish_released Release_location Release_rkm Mean_length Mean_weight
Butte sink east route 2024-04-10 07:35:00 2024-04-17 07:45:00 96 Sanborn_Slough_Rel 290.11 103.7 12.6
Butte sink central route 2024-04-11 07:45:00 2024-04-18 07:52:00 100 North_Weir_Rel 290.11 104.4 13.0
Butte sink west route 2024-04-12 09:20:00 2024-04-19 08:54:00 63 Butte_Blw_Sanborn_Rel 290.11 103.2 12.4
ALL 2024-04-10 07:35:00 2024-04-19 08:54:00 259 NA 290.10 103.8 12.7



2. Real-time Fish Detections


library(leaflet)
library(maps)
library(htmlwidgets)
library(leaflet.extras)
library(dplyr)
library(dbplyr)
library(DBI)
library(odbc)
library(data.table)

# Create connection with cloud database
con <- dbConnect(odbc(),
                Driver = "SQL Server",
                Server = "calfishtrack-server.database.windows.net",
                Database = "realtime_detections",
                UID = "realtime_user",
                PWD = "Pass@123",
                Port = 1433)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

## THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
   cat("No detections yet")

   # Use dbplyr to load realtime_locs and qryHexCodes sql table
   gen_locs <- tbl(con, "realtime_locs") %>% collect()
   # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F) %>% filter(is.na(stop))

   leaflet(data = gen_locs[is.na(gen_locs$stop),]) %>%
       # setView(-72.14600, 43.82977, zoom = 8) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>% 
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addMarkers(~longitude, ~latitude, label = ~general_location, group = "Receiver Sites", popup = ~location) %>% 
       # addAwesomeMarkers(~lon_dd, ~lat_dd, label = ~locality, group = "Sites", icon=icons) %>%
       addScaleBar(position = "bottomleft") %>%
          addLayersControl(
          baseGroups = c("Street Map", "Satellite", "Relief"),
          overlayGroups = c("Receiver Sites"),
          options = layersControlOptions(collapsed = FALSE)) %>%
          addSearchFeatures(targetGroups = c("Receiver Sites"))
} else {

   # Use dbplyr to load realtime_locs and qryHexCodes sql table
   gen_locs <- tbl(con, "realtime_locs") %>% collect()
   # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)

   endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                  max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))

   beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
      mutate(day = as.Date(day)) %>%
      # Subset to only look at data for the correct beacon for that day
      filter(TagCode == beacon)  %>% 
      # Only keep beacon by day for days since fish were released
      filter(day >= as.Date(min(study_tagcodes$release_time)) & day <= endtime) %>%
      dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")

   arrivals_per_day <- detects_study %>%
      group_by(general_location, TagCode) %>%
      summarise(DateTime_PST = min(DateTime_PST, na.rm = T)) %>%
      arrange(TagCode, general_location) %>%
      mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8")) %>%
      group_by(day, general_location) %>%
      summarise(New_arrivals = length(TagCode)) %>%
      na.omit() %>%
      mutate(day = as.Date(day)) %>%
      dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]), ., 
                       by = c("general_location", "day")) %>%
      arrange(general_location, day) %>%
      mutate(day = as.factor(day)) %>%
      filter(general_location != "Bench_test") %>% # Remove bench test
      filter(!(is.na(general_location))) # Remove NA locations

   ## Remove sites that were not operation the whole time
   #### FOR THE SEASONAL SURVIVAL PAGE, KEEP ALL SITES SINCE PEOPLE WANT TO SEE DETECTIONS OF LATER FISH AT NEWLY 
   #### DEPLOYED SPOTS
   gen_locs_days_in_oper <- arrivals_per_day %>%
      group_by(general_location) %>%
      summarise(days_in_oper = length(day))
   #gen_locs_days_in_oper <- gen_locs_days_in_oper[gen_locs_days_in_oper$days_in_oper ==
   #                                               max(gen_locs_days_in_oper$days_in_oper),]
   arrivals_per_day_in_oper <- arrivals_per_day %>%
      filter(general_location %in% gen_locs_days_in_oper$general_location)

   fish_per_site <- arrivals_per_day_in_oper %>%
      group_by(general_location) %>%
      summarise(fish_count = sum(New_arrivals, na.rm=T))

   gen_locs_mean_coords <- gen_locs %>%
      filter(is.na(stop) & general_location %in% fish_per_site$general_location) %>%
      group_by(general_location) %>%
      summarise(latitude = mean(latitude), # estimate mean lat and lons for each genloc
                longitude = mean(longitude))

   fish_per_site <- merge(fish_per_site, gen_locs_mean_coords)
   release_stats_agg <- aggregate(cbind(Release_lon, Release_lat) ~ Release_location, data = release_stats[release_stats$Release != "ALL",], FUN = mean)
   release_stats_agg <- merge(release_stats_agg, aggregate(Number_fish_released ~ Release_location, data = release_stats[release_stats$Release != "ALL",], FUN = sum))

   if(!is.na(release_stats$Release_lat[1])){
     leaflet(data = fish_per_site) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addPulseMarkers(data = fish_per_site[seq(from = 1, to = nrow(fish_per_site), by = 2),], lng = ~longitude, lat = ~latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, direction = "left", textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addPulseMarkers(data = fish_per_site[seq(from = 2, to = nrow(fish_per_site), by = 2),], lng = ~longitude, lat = ~latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, direction = "right", textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addCircleMarkers(data = release_stats_agg, ~Release_lon, ~Release_lat, label = ~Number_fish_released, stroke = F, color = "blue", fillOpacity = 1, 
                        group = "Release Sites", popup = ~Release_location, labelOptions = labelOptions(noHide = T, textsize = "15px")) %>%
       addScaleBar(position = "bottomleft") %>%
       addLegend("bottomright", labels = c("Receivers", "Release locations"), colors = c("red","blue")) %>%
       addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"), options = layersControlOptions(collapsed = FALSE))
   } else {
     leaflet(data = fish_per_site) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addPulseMarkers(lng = fish_per_site$longitude, lat = fish_per_site$latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addScaleBar(position = "bottomleft") %>%
       addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"),
                        options = layersControlOptions(collapsed = FALSE))
   }
}

2.1 Map of unique fish detections at operational realtime detection locations


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

library(cder)

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) > 0){

   detects_study <- detects_study[order(detects_study$TagCode, detects_study$DateTime_PST),]
   ## Now estimate the time in hours between the previous and next detection, for each detection. 
   detects_study$prev_genloc <- shift(detects_study$general_location, fill = NA, type = "lag")
   #detects_study$prev_genloc <- shift(detects_study$General_Location, fill = NA, type = "lag")
   ## Now make NA the time diff values when it's between 2 different tagcodes or genlocs
   detects_study[which(detects_study$TagCode != shift(detects_study$TagCode, fill = NA, type = "lag")), "prev_genloc"] <- NA
   detects_study[which(detects_study$general_location != detects_study$prev_genloc), "prev_genloc"] <- NA
   detects_study$mov_score <- 0
   detects_study[is.na(detects_study$prev_genloc), "mov_score"] <- 1
   detects_study$mov_counter <- cumsum(detects_study$mov_score)

   detects_summary <- aggregate(list(first_detect = detects_study$DateTime_PST), by = list(TagCode = detects_study$TagCode, release_time = detects_study$release_time, mov_counter = detects_study$mov_counter ,general_location = detects_study$general_location, river_km = detects_study$river_km, release_rkm = detects_study$release_rkm), min)

   detects_summary <- detects_summary[is.na(detects_summary$first_detect) == F,]
   releases <- aggregate(list(first_detect = detects_study$release_time), by = list(TagCode = detects_study$TagCode, release_time = detects_study$release_time, release_location=detects_study$release_location, release_rkm = detects_study$release_rkm), min)
   releases$river_km <- releases$release_rkm
   releases$mov_counter <- NA
   releases$general_location <- paste(releases$release_location,"_RELEASE")
   releases$release_location <- NULL

   detects_summary <- rbindlist(list(detects_summary, releases), use.names = T)
   detects_summary <- detects_summary[order(detects_summary$TagCode, detects_summary$first_detect),]

   starttime <- as.Date(min(detects_study$release_time), "Etc/GMT+8")
   ## Endtime should be either now, or end of predicted tag life, whichever comes first
   endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d"))+1, max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))
   #par(mar=c(6, 5, 2, 5) + 0.1)

   MLW <- data.frame()
   CLW <- data.frame()
   TIS <- data.frame()
   FRE <- data.frame()
   ## download weir data only if release loc is above at least fremont
   if(max(detects_study$release_rkm) > 209.5){ 
     MLW <- try(cdec_query(stations = c("MLW"), sensors = 20, durations = "H", start.date = starttime, end.date = endtime))
     CLW <- try(cdec_query(stations = c("CLW"), sensors = 20, durations = "H", start.date = starttime, end.date = endtime))
     TIS <- try(cdec_query(stations = c("TIS"), sensors = 20, durations = "H", start.date = starttime, end.date = endtime))
     FRE <- try(cdec_query(stations = c("FRE"), sensors = 20, durations = "H", start.date = starttime, end.date = endtime))
   }
   if(inherits(MLW, "try-error")|
      inherits(CLW, "try-error")|
      inherits(TIS, "try-error")|
      inherits(FRE, "try-error")|
      nrow(MLW)==0|
      nrow(CLW)==0|
      nrow(TIS)==0|
      nrow(FRE)==0){

    plot_ly(detects_summary, x = ~first_detect, y = ~river_km, color = ~TagCode, width = 900, height = 600, dynamicTicks = TRUE, connectgaps = TRUE, mode = "lines+markers", type = "scatter",hoverinfo = "text",
        text = ~paste("</br> TagCode: ", TagCode,
                      "</br> Arrival: ", first_detect,
                     "</br> Location: ", general_location)) %>%
        layout(showlegend = T, 
          xaxis = list(title = "<b> Date <b>", mirror=T,ticks="outside",showline=T, range=c(starttime,endtime)),
          yaxis = list(title = "<b> Kilometers upstream of the Golden Gate <b>", mirror=T,ticks="outside",showline=T, range=c(max(detects_study$Rel_rkm)+10, min(gen_locs[is.na(gen_locs$stop),"rkm"])-10)),
          legend = list(title=list(text='<b> Tag Code </b>')),
          margin=list(l = 50,r = 100,b = 50,t = 50))
   }else{
     MLW[is.na(MLW$Value)==F, "rkm"] <- 326.3
     CLW[is.na(CLW$Value)==F, "rkm"] <- 310.2
     TIS[is.na(TIS$Value)==F, "rkm"] <- 267.7
     FRE[is.na(FRE$Value)==F, "rkm"]<- 209.5
     MLW[1,"rkm"] <- 1000 ## this ensures it shows up on legend even when weirs arent overtopping
     CLW[1,"rkm"] <- 1000 ## this ensures it shows up on legend even when weirs arent overtopping
     TIS[1,"rkm"] <- 1000 ## this ensures it shows up on legend even when weirs arent overtopping
     FRE[1,"rkm"] <- 1000 ## this ensures it shows up on legend even when weirs arent overtopping

      plot_ly(width = 900, height = 600) %>%
        add_trace(x=~MLW$DateTime, y=~MLW$rkm, type = "scatter", mode = "markers", name = "Moulton spill", marker=list(symbol="square-open", color="red"))  %>%
        add_trace(x=~CLW$DateTime, y=~CLW$rkm, type = "scatter", mode = "markers", name = "Colusa spill", marker=list(symbol="square-open", color="blue"))  %>%
        add_trace(x=~TIS$DateTime, y=~TIS$rkm, type = "scatter", mode = "markers", name = "Tisdale spill", marker=list(symbol="square-open", color="orange"))  %>%
        add_trace(x=~FRE$DateTime, y=~FRE$rkm, type = "scatter", mode = "markers", name = "Fremont spill", marker=list(symbol="square-open", color="green"))  %>%
        add_trace(data=detects_summary, x = ~first_detect, y = ~river_km, color = ~TagCode, dynamicTicks = TRUE, connectgaps = TRUE, mode = "lines+markers", type = "scatter",hoverinfo = "text",
      text = ~paste("</br> TagCode: ", detects_summary$TagCode,"</br> Arrival: ", detects_summary$first_detect,"</br> Location: ", detects_summary$general_location)) %>%
        layout(showlegend = T, xaxis = list(title = "<b> Date <b>", mirror=T,ticks="outside",showline=T, range=c(starttime,endtime)),
        yaxis = list(title = "<b> Kilometers upstream of the Golden Gate <b>", mirror=T,ticks="outside",showline=T, range=c(min(gen_locs[is.na(gen_locs$stop),"rkm"], na.rm = T)-10, max(detects_study$release_rkm, na.rm = T)+10)),legend = list(title=list(text="<b> Weir Spill and Tag Codes </b>")),
        #legend2 = list(title=list(text="<b> Tag Code </b>")),
        margin=list(l = 50,r = 100,b = 50,t = 50))
   }

}else{
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Kilometers upstream of the Golden Gate")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}

2.2 Waterfall Detection Plot


_______________________________________________________________________________________________________

library(tidyr)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_3 <- detects_study %>% filter(general_location == "TowerBridge")

if(nrow(detects_3) == 0){
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  detects_3 <- detects_3 %>%
    dplyr::left_join(., detects_3 %>%
                        group_by(TagCode) %>% 
                        summarise(first_detect = min(DateTime_PST))) %>%
                        mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))

  starttime <- as.Date(min(detects_3$release_time), "Etc/GMT+8")

  # Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  rels            <- unique(study_tagcodes$Release)
  rel_num         <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_3$Release))])

  tagcount1 <- detects_3 %>%
               group_by(Day, Release) %>%
               summarise(unique_tags = length(unique(TagCode))) %>%
               spread(Release, unique_tags)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == "x"] <- paste(i)
    }
  }

  # Download flow data
  flow_day <- readNWISuv(siteNumbers = "11425500", parameterCd="00060", startDate = starttime, 
                         endDate = endtime+1) %>%
                  mutate(Day = as.Date(format(dateTime, "%Y-%m-%d"))) %>%
                  group_by(Day) %>%
                  summarise(parameter_value = mean(X_00060_00000))

  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange2 <- daterange1[,order(colnames(daterange1))] %>%
                dplyr::left_join(., flow_day, by = "Day")
  rownames(daterange2) <- daterange2$Day
  daterange2$Date      <- daterange2$Day
  daterange2$Day       <- NULL
  daterange2_flow      <- daterange2 %>% select(Date, parameter_value)
  daterange3           <- melt(daterange2[,!(names(daterange2) %in% c("parameter_value"))], 
                               id.vars = "Date", variable.name = ".")
  daterange3$.         <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))

  par(mar=c(6, 5, 2, 5) + 0.1)
  ay <- list(
    overlaying = "y",
    nticks = 5,
    color = "#947FFF",
    side = "right",
    title = "Flow (cfs) at Verona",
    automargin = TRUE
  )

  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
          add_bars(x = ~Date, y = ~value, color = ~.) %>%
          add_annotations(text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                          x=0.01, xanchor="left",
                          y=1.056, yanchor="top",    # Same y as legend below
                          legendtitle=TRUE, showarrow=FALSE ) %>%
          add_lines(x=~daterange2_flow$Date, 
                    y=~daterange2_flow$parameter_value, 
                    line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, 
                    inherit=FALSE) %>%
          layout(yaxis2 = ay,showlegend = T, 
          barmode = "stack",
          xaxis = list(title = "Date", mirror=T,ticks="outside",showline=T), 
          yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks="outside",showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50))

}

2.3 Detections at Tower Bridge (downtown Sacramento) versus Sacramento River flows at Verona for duration of tag life


_______________________________________________________________________________________________________

library(tidyr)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_4 <- detects_study %>% filter(general_location == "Benicia_west" | general_location == "Benicia_east")

if(nrow(detects_4) == 0){
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  detects_4 <- detects_4 %>%
    dplyr::left_join(., detects_4 %>%
                        group_by(TagCode) %>% 
                        summarise(first_detect = min(DateTime_PST))) %>%
                        mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))

  starttime <- as.Date(min(detects_4$release_time), "Etc/GMT+8")

  # Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  rels            <- unique(study_tagcodes$Release)
  rel_num         <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_4$Release))])

  tagcount1 <- detects_4 %>%
               group_by(Day, Release) %>%
               summarise(unique_tags = length(unique(TagCode))) %>%
               spread(Release, unique_tags)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == "x"] <- paste(i)
    }
  }

  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
  daterange2 <- daterange1
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL

  par(mar=c(6, 5, 2, 5) + 0.1)

  daterange2$Date <- as.Date(row.names(daterange2))
  daterange3      <- melt(daterange2, id.vars = "Date", variable.name = ".", )
  daterange3$.    <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))

  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
    add_bars(x = ~Date, y = ~value, color = ~.) %>%
    add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                     x=0.01, xanchor="left",
                     y=1.056, yanchor="top",    # Same y as legend below
                     legendtitle=TRUE, showarrow=FALSE ) %>%
    layout(showlegend = T, 
           barmode = "stack",
           xaxis = list(title = "Date", mirror=T,ticks="outside",showline=T), 
           yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks="outside",showline=T),
           legend = list(orientation = "h",x = 0.34, y = 1.066),
           margin=list(l = 50,r = 100,b = 50,t = 50))
}

2.4 Detections at Benicia Bridge for duration of tag life



3. Survival and Routing Probability


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_tower <- detects_study %>% filter(general_location == "TowerBridge")

if(nrow(detects_tower) == 0){
  WR.surv <- data.frame("Release"=NA, "Survival (%)"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA,
                        "95% upper C.I."=NA, "Detection efficiency (%)"=NA)
  colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.",
                         "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS
              survival model). If Yolo Bypass Weirs are overtopping during migration, fish may have taken
              that route, and therefore this is a minimum estimate of survival") %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"),
                  full_width = F, position = "left"))

} else {

  study_count <- nrow(study_tagcodes)

  # Only do survival to Sac for now
  surv <- detects_study %>% filter(river_km > 168 & river_km < 175)

  # calculate mean and SD travel time
  travel <- aggregate(list(first_detect = surv$DateTime_PST), by = list(Release = surv$Release, TagCode = surv$TagCode, RelDT = surv$RelDT), min)
  travel$days <- as.numeric(difftime(travel$first_detect, travel$RelDT, units = "days"))

  travel_final <- aggregate(list(mean_travel_time = travel$days), by = list(Release = travel$Release), mean)
  travel_final <- merge(travel_final, aggregate(list(sd_travel_time = travel$days), by = list(Release = travel$Release), sd))
  travel_final <- merge(travel_final, aggregate(list(n = travel$days), by = list(Release = travel$Release), length))
  travel_final <- rbind(travel_final, data.frame(Release = "ALL", mean_travel_time = mean(travel$days), sd_travel_time = sd(travel$days),n = nrow(travel)))

  # Create inp for survival estimation
  inp <- as.data.frame(reshape2::dcast(surv, TagCode ~ river_km, fun.aggregate = length))

  # Sort columns by river km in descending order
  gen_loc_sites <- ncol(inp)-1 # Count number of genlocs
  if(gen_loc_sites < 2){
    WR.surv <- data.frame("Release"=NA, "Survival (%)"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA,
                          "95% upper C.I."=NA, "Detection efficiency (%)"=NA)
    colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.",
                           "Detection efficiency (%)")
    print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS
                survival model). If Yolo Bypass Weirs are overtopping during migration, fish may
                have taken that route, and therefore this is a minimum estimate of survival") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), 
                        full_width = F,position = "left"))
  } else {
    inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)] %>%
            dplyr::left_join(study_tagcodes, ., by = "TagCode")

    inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)] %>%
            replace(is.na(.), 0) %>%
            replace(., . > 0, 1)

    inp          <- cbind(inp, inp2)
    groups       <- as.character(sort(unique(inp$Release)))
    surv$Release <- factor(surv$Release, levels = groups)
    inp[,groups] <- 0

    for (i in groups) {
      inp[as.character(inp$Release) == i, i] <- 1
    }

    inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")

    if(length(groups) > 1){
      # make sure factor levels have a release that has detections first. if first release in factor order
      # has zero detectins, model goes haywire
      inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1,
      rel = factor(inp$Release, levels = names(sort(table(surv$Release),decreasing = T))),
                   stringsAsFactors = F)

      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")

      WR.ddl <- make.design.data(WR.process)

      WR.mark.all <- mark(WR.process, WR.ddl,
                          model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                          silent = T, output = F)

      WR.mark.rel <- mark(WR.process, WR.ddl,
                          model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)),
                          silent = T, output = F)

      WR.surv <- round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1)
      WR.surv <- rbind(WR.surv, round(WR.mark.rel$results$real[seq(from=1,to=length(groups)*2,by = 2),
                       c("estimate", "se", "lcl", "ucl")] * 100,1))
      WR.surv$Detection_efficiency <- NA
      WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
      WR.surv <- cbind(c("ALL", names(sort(table(surv$Release),decreasing = T))), WR.surv)
    }
    if(length(intersect(colnames(inp),groups)) < 2){
      inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""), " ", 1,sep = "")
      write.table(inp$inp_final,"WRinp.inp",row.names = F, col.names = F, quote = F)
      WRinp <- convert.inp("WRinp.inp")
      WR.process <- process.data(WRinp, model="CJS", begin.time=1)

      WR.ddl <- make.design.data(WR.process)

      WR.mark.all <- mark(WR.process, WR.ddl,
                          model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                          silent = T, output = F)

      WR.mark.rel <- mark(WR.process, WR.ddl,
                          model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                          silent = T, output = F)

      WR.surv <- round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1)
      WR.surv <- rbind(WR.surv, round(WR.mark.rel$results$real[seq(from=1,to=length(groups)*2,by = 2),
                                                               c("estimate", "se", "lcl", "ucl")] * 100,1))
      WR.surv$Detection_efficiency <- NA
      WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
      WR.surv <- cbind(c("ALL", groups), WR.surv)
    }

    colnames(WR.surv)[1] <- "Release"
    WR.surv <- merge(WR.surv, travel_final, by = "Release", all.x = T)
    WR.surv$mean_travel_time <- round(WR.surv$mean_travel_time,1)
    WR.surv$sd_travel_time <- round(WR.surv$sd_travel_time,1)
    colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", 
                           "95% upper C.I.", "Detection efficiency (%)", "Mean time to Tower (days)", "SD of time to Tower (days)","Count")


  WR.surv <- WR.surv %>% arrange(., Release)
  print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS
        survival model), and travel time. If Yolo Bypass Weirs are overtopping during migration, fish may have taken 
        that route, and therefore this is a minimum estimate of survival") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), 
                        full_width = F, position = "left"))
  }
}
3.1 Minimum survival to Tower Bridge (using CJS survival model), and travel time. If Yolo Bypass Weirs are overtopping during migration, fish may have taken that route, and therefore this is a minimum estimate of survival
Release Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%) Mean time to Tower (days) SD of time to Tower (days) Count
ALL 17.9 2.4 13.6 23.0 88.6 5.8 2.5 46
Butte sink central route 16.1 3.7 10.1 24.7 NA 6.3 2.7 16
Butte sink east route 17.8 3.9 11.4 26.9 NA 4.9 1.5 17
Butte sink west route 20.6 5.1 12.4 32.4 NA 6.3 3.1 13


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

route_results_possible <- FALSE

if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  results_short <- data.frame("Measure"=NA, "Estimate"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA,
                              "95% upper C.I."=NA)
  colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
  print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability
                                                               of entering Georgiana Slough") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"),
                        full_width = F, position = "left"))
} else {

  # Only do survival to Georg split for now
  test2 <- detects_study %>%
           filter(general_location %in% c("TowerBridge", "I80-50_Br","SacRiverWalnutGrove_2", "Sac_BlwGeorgiana",
                                          "Sac_BlwGeorgiana2", "Georg_Sl_1", "Georgiana_Slough2"))

  # We can only do a multi-state model if there is at least one detection in each route
  if(nrow(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2"),]) == 0 |
     nrow(test2[test2$general_location %in% c("Georg_Sl_1", "Georgiana_Slough2"),]) == 0){
    results_short <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA,
                                "95% upper C.I."=NA)
    colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of
                entering Georgiana Slough") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"),
                          full_width = F, position = "left"))
  } else {

    # Make tagcode character
    study_tagcodes$TagCode <- as.character(study_tagcodes$TagCode)

    # Make a crosstab query with frequencies for all tag/location combination
    test2$general_location <- factor(test2$general_location,
                                     levels = c("TowerBridge", "I80-50_Br","SacRiverWalnutGrove_2", "Sac_BlwGeorgiana",
                                                "Sac_BlwGeorgiana2", "Georg_Sl_1", "Georgiana_Slough2"))
    test2$TagCode <- factor(test2$TagCode, levels = study_tagcodes$TagCode)
    mytable <- table(test2$TagCode, test2$general_location) # A will be rows, B will be columns

    # Change all frequencies bigger than 1 to 1. Here you could change your minimum cutoff to 2 detections,
    # and then make another command that changes all detections=1 to 0
    mytable[mytable>0] <- "A"

    # Order in order of rkm
    mytable2 <- mytable[, c("TowerBridge", "I80-50_Br","SacRiverWalnutGrove_2", "Sac_BlwGeorgiana", "Sac_BlwGeorgiana2",
                            "Georg_Sl_1", "Georgiana_Slough2")]

    # Now sort the crosstab rows alphabetically
    mytable2 <- mytable2[order(row.names(mytable2)),]
    mytable2[which(mytable2[, "Sac_BlwGeorgiana"]=="A"), "Sac_BlwGeorgiana"]   <- "A"
    mytable2[which(mytable2[, "Sac_BlwGeorgiana2"]=="A"), "Sac_BlwGeorgiana2"] <- "A"
    mytable2[which(mytable2[, "Georg_Sl_1"]=="A"), "Georg_Sl_1"] <- "B"
    mytable2[which(mytable2[, "Georgiana_Slough2"]=="A"), "Georgiana_Slough2"] <- "B"

    # Now order the study_tagcodes table the same way
    study_tagcodes <- study_tagcodes[order(study_tagcodes$TagCode),]

    # Paste together (concatenate) the data from each column of the crosstab into one string per row, add to tagging_meta.
    # For this step, make sure both are sorted by FishID
    study_tagcodes$inp_part1 <- apply(mytable2[,1:3],1,paste,collapse="")
    study_tagcodes$inp_partA <- apply(mytable2[,4:5],1,paste,collapse="")
    study_tagcodes$inp_partB <- apply(mytable2[,6:7],1,paste,collapse="")

    # find last detection at each genloc
    departure <- aggregate(list(depart = test2$DateTime_PST), by = list(TagCode = test2$TagCode, last_location = test2$general_location), FUN = max)
    # subset for just juncture locations
    departure <- departure[departure$last_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2", "Georg_Sl_1", "Georgiana_Slough2"),]
    # Find genloc of last known detection per tag
    last_depart    <- aggregate(list(depart = departure$depart), by = list(TagCode = departure$TagCode), FUN = max)
    last_depart1   <- merge(last_depart, departure)
    study_tagcodes <- merge(study_tagcodes, last_depart1[,c("TagCode", "last_location")], by = "TagCode", all.x = T)

    # Assume that the Sac is default pathway, and for fish that were detected in neither route, it would get a "00" in inp so does not matter anyway
    study_tagcodes$inp_final <- paste("A",study_tagcodes$inp_part1, study_tagcodes$inp_partA," 1 ;", sep = "")

    # now put in exceptions...fish that were seen in georgiana last
    study_tagcodes[study_tagcodes$last_location %in% c("Georg_Sl_1", "Georgiana_Slough2"), "inp_final"] <-
       paste("A",
             study_tagcodes[study_tagcodes$last_location %in% c("Georg_Sl_1", "Georgiana_Slough2"), "inp_part1"],
             study_tagcodes[study_tagcodes$last_location %in% c("Georg_Sl_1", "Georgiana_Slough2"), "inp_partB"],
             " 1 ;", 
             sep = "")

    # At this point, some fish might not have been deemed to ever take a route based on last visit analysis. If so, model cannot be run
    if(any(grepl(pattern = "A", study_tagcodes$inp_final)==T) & any(grepl(pattern = "B", study_tagcodes$inp_final)==T)){

      write.table(study_tagcodes$inp_final,"WRinp_multistate.inp",row.names = F, col.names = F, quote = F)

      WRinp <- convert.inp("WRinp_multistate.inp")

      dp <- process.data(WRinp, model="Multistrata") 

      ddl <- make.design.data(dp)

      #### p ####
      # Cannott be seen at 2B or 3B or 4B (tower or I80 or walnut grove) and currently second georg is missing so set to 0 as well and to 1 for first line
      ddl$p$fix = NA
      ddl$p$fix[ddl$p$stratum == "B" & ddl$p$time %in% c(2,3,4,6)] = 0
      ddl$p$fix[ddl$p$stratum == "B" & ddl$p$time %in% c(5)] = 1

      #### Psi ####
      # Only 1 transition allowed:
      # from A to B at time interval 4 to 5
      ddl$Psi$fix = 0
      # A to B can only happen for interval 3-4
      ddl$Psi$fix[ddl$Psi$stratum == "A"&
                  ddl$Psi$tostratum == "B" & 
                  ddl$Psi$time == 4] = NA

      #### Phi a.k.a. S ####
      ddl$S$fix = NA
      # None in B for reaches 1,2,3,4 and fixing it to 1 for 5 (between two georg lines). All getting fixed to 1
      ddl$S$fix[ddl$S$stratum == "B" & ddl$S$time %in% c(1,2,3,4,5)] = 1

      # For route A, fixing it to 1 for 5 (between two blw_georg lines)
      ddl$S$fix[ddl$S$stratum == "A" & ddl$S$time == 5] = 1
      # We use -1 at beginning of formula to remove intercept. This is because different routes probably should not share the same intercept

      p.timexstratum   = list(formula=~-1+stratum:time)
      Psi.stratumxtime = list(formula=~-1+stratum:time)
      S.stratumxtime   = list(formula=~-1+stratum:time)

      # Run model a first time
      S.timexstratum.p.timexstratum.Psi.timexstratum = mark(dp, ddl,
                                                            model.parameters = list(S = S.stratumxtime,p = p.timexstratum,Psi = Psi.stratumxtime),
                                                            realvcv = T, silent = T, output = F)

      # Identify any parameter estimates at 1, which would likely have bad SE estimates.
      profile.intervals <- which(S.timexstratum.p.timexstratum.Psi.timexstratum$results$real$estimate %in% c(0,1) &
                                 !S.timexstratum.p.timexstratum.Psi.timexstratum$results$real$fixed == "Fixed")

      # Rerun model using profile interval estimation for the tricky parameters
      S.timexstratum.p.timexstratum.Psi.timexstratum = mark(dp, ddl,
                                                            model.parameters=list(S=S.stratumxtime,p= p.timexstratum,Psi=Psi.stratumxtime),
                                                            realvcv = T, profile.int = profile.intervals, silent = T, output = F)

      results <- S.timexstratum.p.timexstratum.Psi.timexstratum$results$real

      results_short <- results[rownames(results) %in% c("S sA g1 c1 a0 o1 t1",
                                                        "S sA g1 c1 a1 o2 t2",
                                                        "S sA g1 c1 a2 o3 t3",
                                                        "S sA g1 c1 a3 o4 t4",
                                                        "p sA g1 c1 a1 o1 t2",
                                                        "p sA g1 c1 a2 o2 t3",
                                                        "p sA g1 c1 a3 o3 t4",
                                                        "p sA g1 c1 a4 o4 t5",
                                                        "p sB g1 c1 a4 o4 t5",
                                                        "Psi sA toB g1 c1 a3 o4 t4"),]

      results_short <- round(results_short[,c("estimate", "se", "lcl", "ucl")] * 100,1)

      # Now find estimate and CIs for AtoA route at junction
      Psilist   = get.real(S.timexstratum.p.timexstratum.Psi.timexstratum,"Psi",vcv=TRUE)
      Psivalues = Psilist$estimates

      routes <- TransitionMatrix(Psivalues[Psivalues$time==4 & Psivalues$cohort==1,],vcv.real=Psilist$vcv.real)

      results_short$Measure <- c("Survival from Release to TowerBridge (minimum estimate since fish may have taken Yolo
                                 Bypass)", "Survival from TowerBridge to I80-50_Br", "% arrived from I80-50_Br to Walnut Grove (not survival because
                                 fish may have taken Sutter/Steam)","Survival from Walnut Grove to Georgiana Slough confluence","Detection probability at TowerBridge",
                                 "Detection probability at I80-50_Br", "Detection probability at Walnut Grove", "Detection probability at Blw_Georgiana", 
                                 #"Detection probability at Georgiana Slough (fixed at 1)",
                                 "Routing probability into Georgiana Slough (Conditional on fish arriving to junction)")

      results_short <- results_short[,c("Measure", "estimate", "se", "lcl", "ucl")]
      colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")

      print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of entering Georgiana Slough") %>%
              kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

      route_results_possible <- TRUE

    } else {
      results_short <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
      colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
      print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of entering Georgiana Slough") %>%
              kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
    }
  }
}
3.2 Reach-specific survival and probability of entering Georgiana Slough
Measure Estimate SE 95% lower C.I. 95% upper C.I.
Survival from Release to TowerBridge (minimum estimate since fish may have taken Yolo Bypass) 18.6 2.4 14.3 23.8
Survival from TowerBridge to I80-50_Br 100.0 0.0 95.4 100.0
% arrived from I80-50_Br to Walnut Grove (not survival because fish may have taken Sutter/Steam) 85.3 5.1 72.2 92.8
Survival from Walnut Grove to Georgiana Slough confluence 100.0 0.0 100.0 100.0
Detection probability at TowerBridge 85.3 5.1 72.2 92.8
Detection probability at I80-50_Br 91.5 4.1 79.4 96.8
Detection probability at Walnut Grove 100.0 0.0 100.0 100.0
Detection probability at Blw_Georgiana 100.0 0.0 100.0 100.0
Routing probability into Georgiana Slough (Conditional on fish arriving to junction) 2.4 2.4 0.3 15.4
# If you do not have access to local files, uncomment and run next lines of code
#download.file("https://raw.githubusercontent.com/CalFishTrack/real-time/master/data/georg.png",destfile = "georg.png", quiet = T, mode = "wb")

georg <- readPNG("georg.png")
par(mar = c(2,0,0,0))
# Set up the plot area
plot(1:2, type="n", xlab="", ylab="", xaxt = "n", yaxt = "n")

# Get the plot information so the image will fill the plot box, and draw it
lim <- par()
rasterImage(georg, lim$usr[1], lim$usr[3], lim$usr[2], lim$usr[4])
if(nrow(detects_study[is.na(detects_study$DateTime_PST) == F,]) == 0){
    legend(x = 1.55,y = 1.6,legend =  "No detections yet",col = "white", box.col = "light gray", bg = "light gray") 
    legend(x = 1.55,y = 1.45,legend =  "No detections yet",col = "white", box.col = "light gray", bg = "light gray")

} else if (route_results_possible == F){
    legend(x = 1.55,y = 1.6,legend =  "Too few detections",col = "white", box.col = "light gray", bg = "light gray") 
    legend(x = 1.55,y = 1.45,legend =  "Too few detections",col = "white", box.col = "light gray", bg = "light gray")

} else {
  legend(x = 1.55,y = 1.6,legend =  paste(round(routes$TransitionMat["A","A"],3)*100,
                                          "% (", round(routes$lcl.TransitionMat["A","A"],3)*100, "-",
                                          round(routes$ucl.TransitionMat["A","A"],3)*100,")", sep =""),
         col = "white", box.col = "light gray", bg = "light gray")
  legend(1.55,1.45, legend =  paste(round(routes$TransitionMat["A","B"],3)*100, 
                                    "% (", round(routes$lcl.TransitionMat["A","B"],3)*100, "-",
                                    round(routes$ucl.TransitionMat["A","B"],3)*100,")", sep =""),
         box.col = "light gray", bg = "light gray")
}

mtext(text = "3.3 Routing Probabilities at Georgiana Slough Junction (with 95% C.I.s)", cex = 1.3, side = 1, line = 0.2, adj = 0)

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  plot(1:2, type = "n",xaxt = "n", yaxt = "n",
       xlab = "Range of days study fish were present at Georgiana Sl Junction",
       ylab = "Routing probability into Georgiana Slough at the junction")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)

} else if(route_results_possible == F){
  plot(1:2, type = "n",xaxt = "n", yaxt = "n",
       xlab = "Range of days study fish were present at Georgiana Sl Junction",
       ylab = "Routing probability into Georgiana Slough at the junction")
  text(1.5,1.5, labels = "TOO FEW DETECTIONS", cex = 2)

} else {
  library(repmis)
  trytest <- try(source_data("https://code.usgs.gov/crrl_qfes/Enhanced_Acoustic_Telemetry_Project/raw/master/EAT_data_2023.Rdata?raw=True"))

  if (inherits(trytest, "try-error")){
    plot(1:2, type = "n",xaxt = "n", yaxt = "n",
         xlab = "Range of days study fish were present at Georgiana Sl Junction",
         ylab = "Routing probability into Georgiana Slough at the junction")
    text(1.5,1.5, labels = "ERROR DOWNLOADING STARS", cex = 2)

  } else {
    detects_5 <- detects_study %>% filter(general_location == "SacRiverWalnutGrove_2")
    detects_5 <- detects_5 %>%
      dplyr::left_join(., detects_5 %>%
                         group_by(TagCode) %>%
                         summarise(first_detect = min(DateTime_PST))) %>%
      mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))
    tagcount5 <- detects_5 %>%
      group_by(Day) %>%
      summarise(unique_tags = length(unique(TagCode)))
    tagcount5$density <- tagcount5$unique_tags / sum(tagcount5$unique_tags)
    test2 <- as.data.frame(test2)
    # first, find min and max arrivals at georg for a study
    min_georg <- as.Date(format(min(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2","Georg_Sl_1",
                                                                        "Georgiana_Slough2"),"DateTime_PST"]), "%Y-%m-%d"))
    max_georg <- as.Date(format(max(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2","Georg_Sl_1",
                                                                        "Georgiana_Slough2"),"DateTime_PST"]), "%Y-%m-%d"))

    psi_study <- psi_GeoCond[psi_GeoCond$Date <= max_georg & psi_GeoCond$Date >=min_georg-1,]

    ggplot()+
      geom_bar(data = tagcount5, aes(x = Day, y = density), alpha = 0.4, stat = "identity", fill = "red") +
      geom_ribbon(data = psi_study, aes(x=Date, ymin = psi_geo.10, ymax = psi_geo.90), alpha = 0.3) +
      geom_line(data = psi_study, aes(x=Date, y=psi_geo.50), size = 1.2) +
      geom_point(aes(x = median(rep(tagcount5$Day, tagcount5$unique_tags)), y = tail(results_short$Estimate,1)/100), size = 4)+
      geom_errorbar(width = 0.2, size = 1.2, aes(ymin = tail(results_short$`95% lower C.I.`,1)/100, ymax = tail(results_short$`95% upper C.I.`,1)/100, x = median(rep(tagcount5$Day, tagcount5$unique_tags))))+
      xlim(c(min_georg, max_georg))+
      xlab("Range of days study fish were present at Georgiana Sl Junction") +
      geom_hline(yintercept=0, linetype="dashed") +
      geom_segment(aes(x=median(rep(tagcount5$Day, tagcount5$unique_tags)),y =-0.01,xend=median(rep(tagcount5$Day, tagcount5$unique_tags)),yend =0.01)) +
      geom_text(aes(x=median(rep(tagcount5$Day, tagcount5$unique_tags)),y =-0.02, label = "median"), color = "red")+
      scale_y_continuous(name = "Routing probability into Georgiana Slough at the junction",limits = c(-0.02,1), sec.axis = dup_axis(name="Histogram of arrivals to junction")) +
      theme_bw()+
      theme(axis.text.y.right = element_text(color = "red"), axis.title.y.right = element_text(color = "red"))

  }
}
3.4 STARS prediction (ribbon) vs. empirical (point) estimate of Routing Probability at Georgiana Slough Junction

3.4 STARS prediction (ribbon) vs. empirical (point) estimate of Routing Probability at Georgiana Slough Junction


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

try(Delta <- read.csv("Delta_surv.csv", stringsAsFactors = F))

if(nrow(detects_study[is.na(detects_study$DateTime_PST) == F,]) == 0){
    WR.surv1 <- data.frame("Measure"=NA, "Estimate"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
    colnames(WR.surv1) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(WR.surv1, row.names = F, "html", caption = "3.5 Minimum through-Delta survival: City of Sacramento to Benicia (using CJS survival model)") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

} else {
  test4 <- detects_study[detects_study$general_location %in% c("TowerBridge", "I80-50_Br", "Benicia_west", "Benicia_east"),]

  if(nrow(test4[test4$general_location =="Benicia_west",]) == 0 | nrow(test4[test4$general_location =="Benicia_east",]) == 0){
    WR.surv1 <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
    colnames(WR.surv1) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(WR.surv1, row.names = F, "html", caption = "3.5 Minimum through-Delta survival: City of Sacramento to Benicia (using CJS survival model)") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

  } else {

  # calculate mean and SD travel time
  sac <- test4[test4$general_location %in% c("TowerBridge", "I80-50_Br"),]
  ben <- test4[test4$general_location %in% c("Benicia_west", "Benicia_east"),]
  travel_sac <- aggregate(list(first_detect_sac = sac$DateTime_PST), by = list(Release = sac$Release, TagCode = sac$TagCode), min)
  travel_ben <- aggregate(list(first_detect_ben = ben$DateTime_PST), by = list(Release = ben$Release, TagCode = ben$TagCode), min)
  travel <- merge(travel_sac, travel_ben, by = c("Release","TagCode"))
  travel$days <- as.numeric(difftime(travel$first_detect_ben, travel$first_detect_sac, units = "days"))

  if(nrow(travel)>0){
    travel_final <- aggregate(list(mean_travel_time = travel$days), by = list(Release = travel$Release), mean)
    travel_final <- merge(travel_final, aggregate(list(sd_travel_time = travel$days), by = list(Release = travel$Release), sd))
    travel_final <- merge(travel_final, aggregate(list(n = travel$days), by = list(Release = travel$Release), length))
    travel_final <- rbind(travel_final, data.frame(Release = "ALL", mean_travel_time = mean(travel$days), sd_travel_time = sd(travel$days), n = nrow(travel)))
  }else{
    travel_final <- data.frame(Release = c(unique(detects_study$Release),"ALL"), mean_travel_time = NA, sd_travel_time = NA, n = NA)
  }

  travel_final <- aggregate(list(mean_travel_time = travel$days), by = list(Release = travel$Release), mean)
  travel_final <- merge(travel_final, aggregate(list(sd_travel_time = travel$days), by = list(Release = travel$Release), sd))
  travel_final <- merge(travel_final, aggregate(list(n = travel$days), by = list(Release = travel$Release), length))
  travel_final <- rbind(travel_final, data.frame(Release = "ALL", mean_travel_time = mean(travel$days), sd_travel_time = sd(travel$days), n = nrow(travel)))

  inp <- as.data.frame(reshape2::dcast(test4, TagCode ~ general_location, fun.aggregate = length))

  # add together detections at Tower and I80 to ensure good detection entering Delta
  if("I80-50_Br" %in% colnames(inp) & "TowerBridge" %in% colnames(inp)){
  inp$`I80-50_Br` <- inp$`I80-50_Br` + inp$TowerBridge

  } else if("TowerBridge" %in% colnames(inp)){
    inp$`I80-50_Br` <- inp$TowerBridge
  }

  # Sort columns by river km in descending order, this also removes TowerBridge, no longer needed
  inp <- inp[,c("TagCode","I80-50_Br", "Benicia_east", "Benicia_west")]

  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1

  inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]
  inp <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)

  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]
  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0] <- 1

  inp <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))
  groups_w_detects <- names(table(detects_study[which(detects_study$river_km < 53),"Release"]))
  inp[,groups] <- 0

  for(i in groups){
    inp[as.character(inp$Release) == i, i] <- 1
  }

  inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")

  if(length(groups) > 1){
    # make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 

    WR.ddl <- make.design.data(WR.process)

    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                        silent = T, output = F)

    inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
    inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)

    if(length(groups_w_detects) > 1){
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")

      WR.ddl <- make.design.data(WR.process)

      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)),
                          silent = T, output = F)

    } else {
      WR.process <- process.data(inp.df, model="CJS", begin.time=1) 

      WR.ddl <- make.design.data(WR.process)

      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                          silent = T, output = F)
    }

    WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[2,c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- cbind(Release = groups_w_detects,
                         round(WR.mark.rel$results$real[seq(from=2,to=length(groups_w_detects)*3,by = 3),
                                                        c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
    WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
    WR.surv <- rbind(WR.surv, WR.surv.rel)

  } else {
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 

    WR.ddl <- make.design.data(WR.process)

    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                        silent = T, output = F)
    WR.surv <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[2,c("estimate", "se", "lcl", "ucl")] * 100,1))
  }

  WR.surv1 <- WR.surv

  colnames(WR.surv1)[1] <- "Release"
  WR.surv1 <- merge(WR.surv1, travel_final, by = "Release", all.x = T)
  WR.surv1$mean_travel_time <- round(WR.surv1$mean_travel_time,1)
  WR.surv1$sd_travel_time <- round(WR.surv1$sd_travel_time,1)
  colnames(WR.surv1) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", 
                          "95% upper C.I.", "Mean Delta passage (days)", "SD of Delta Passage (days)","Count")
  #colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.2 Minimum through-Delta survival, and travel time: City of Sacramento to Benicia (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

  if(exists("Delta")==T & is.numeric(WR.surv1[1,2])){
    reltimes <- aggregate(list(RelDT = study_tagcodes$release_time), by = list(Release = study_tagcodes$Release), FUN = mean)
    reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$release_time)))

    # Assign whether the results are tentative or final
    quality <- "tentative"
    if(endtime < as.Date(format(Sys.time(), "%Y-%m-%d"))){
      quality <- "final"}

      WR.surv <- merge(WR.surv, reltimes, by = "Release", all.x = T)

      WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = "1970-01-01")

      Delta$RelDT <- as.POSIXct(Delta$RelDT)

      # remove old benicia record for this studyID
      Delta <- Delta[!Delta$StudyID %in% unique(detects_study$Study_ID),]
      Delta <- rbind(Delta, data.frame(WR.surv, StudyID = unique(detects_study$Study_ID), data_quality = quality))

      write.csv(Delta, "Delta_surv.csv", row.names = F, quote = F) 
    }
  }
}
3.2 Minimum through-Delta survival, and travel time: City of Sacramento to Benicia (using CJS survival model)
Release Survival (%) SE 95% lower C.I. 95% upper C.I. Mean Delta passage (days) SD of Delta Passage (days) Count
ALL 45.7 7.3 32.0 60.0 4.1 1.2 21
Butte sink central route 50.0 12.5 27.3 72.7 4.2 1.0 8
Butte sink east route 47.1 12.1 25.5 69.7 4.3 1.5 8
Butte sink west route 38.5 13.5 17.0 65.6 3.5 0.9 5


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

try(benicia <- read.csv("benicia_surv.csv", stringsAsFactors = F))

detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]
endtime         <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

if(nrow(detects_benicia) == 0){
  if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
    WR.surv <- data.frame("Release"="ALL", "estimate"=0, "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)

  } else {
    WR.surv <- data.frame("Release"=NA, "estimate"="NO DETECTIONS YET", "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
  }

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.6 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

} else if(length(table(detects_benicia$general_location)) == 1){
  if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
    WR.surv <- data.frame("Release"="ALL", "estimate"=round(length(unique(detects_benicia$TagCode))/length(unique(detects_study$TagCode))*100,1),
                          "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)

  } else {
    WR.surv <- data.frame("Release" = NA, "estimate" = "NOT ENOUGH DETECTIONS", "se" = NA, "lcl" = NA, "ucl" = NA, "Detection_efficiency" = NA)
  }

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.6 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
         kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

} else {
  # Only do survival to Benicia here
  test3 <- detects_study[which(detects_study$river_km < 53),]

  # calculate mean and SD travel time
  travel <- aggregate(list(first_detect = test3$DateTime_PST), by = list(Release = test3$Release, TagCode = test3$TagCode, RelDT = test3$RelDT), min)
  travel$days <- as.numeric(difftime(travel$first_detect, travel$RelDT, units = "days"))

  travel_final <- aggregate(list(mean_travel_time = travel$days), by = list(Release = travel$Release), mean)
  travel_final <- merge(travel_final, aggregate(list(sd_travel_time = travel$days), by = list(Release = travel$Release), sd))
  travel_final <- merge(travel_final, aggregate(list(n = travel$days), by = list(Release = travel$Release), length))
  travel_final <- rbind(travel_final, data.frame(Release = "ALL", mean_travel_time = mean(travel$days), sd_travel_time = sd(travel$days), n = nrow(travel)))

  # Create inp for survival estimation
  inp <- as.data.frame(reshape2::dcast(test3, TagCode ~ river_km, fun.aggregate = length))

  # Sort columns by river km in descending order
  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1

  inp  <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]
  inp  <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)
  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]

  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0]    <- 1

  inp    <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))
  groups_w_detects <- names(table(test3$Release))

  inp[,groups] <- 0

  for(i in groups){
    inp[as.character(inp$Release) == i, i] <- 1
  }

  inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")

  if(length(groups) > 1){
    # make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1)

    WR.ddl <- make.design.data(WR.process)

    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)

    inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
    inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)

    if(length(groups_w_detects) > 1){
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)

    } else {
      WR.process <- process.data(inp.df, model="CJS", begin.time=1)
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    }

    WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- cbind(Release = groups_w_detects, round(WR.mark.rel$results$real[seq(from=1,to=length(groups_w_detects)*2,by = 2),
                                                                                    c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
    WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
    WR.surv <- rbind(WR.surv, WR.surv.rel)

  } else {
    inp.df      <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)
    WR.process  <- process.data(inp.df, model="CJS", begin.time=1) 
    WR.ddl      <- make.design.data(WR.process)
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    WR.surv     <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
  }

  WR.surv$Detection_efficiency <- NA
  WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
  WR.surv1 <- WR.surv

  colnames(WR.surv1)[1] <- "Release"
  WR.surv1 <- merge(WR.surv1, travel_final, by = "Release", all.x = T)
  WR.surv1$mean_travel_time <- round(WR.surv1$mean_travel_time,1)
  WR.surv1$sd_travel_time <- round(WR.surv1$sd_travel_time,1)
  colnames(WR.surv1) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", 
                          "95% upper C.I.", "Detection efficiency (%)", "Mean time to Benicia (days)", "SD of time to Benicia (days)", "Count")
  #colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")

  print(kable(WR.surv1, row.names = F, "html", caption = "3.3 Minimum survival to Benicia Bridge East Span (using CJS survival model), and travel time") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
}
3.3 Minimum survival to Benicia Bridge East Span (using CJS survival model), and travel time
Release Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%) Mean time to Benicia (days) SD of time to Benicia (days) Count
ALL 8.1 1.7 5.3 12.1 100 9.3 1.5 21
Butte sink central route 8.0 2.7 4.1 15.2 NA 10.0 1.3 8
Butte sink east route 8.3 2.8 4.2 15.8 NA 9.0 1.3 8
Butte sink west route 7.9 3.4 3.3 17.7 NA 8.6 2.1 5
if(exists("benicia")==T & is.numeric(WR.surv1[1,2])){
  # Find mean release time per release group, and ALL
  reltimes <- aggregate(list(RelDT = study_tagcodes$release_time), by = list(Release = study_tagcodes$Release), FUN = mean)
  reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$release_time)))

  # Assign whether the results are tentative or final
  quality <- "tentative"
  if(endtime < as.Date(format(Sys.time(), "%Y-%m-%d"))){
    quality <- "final"
  }

  WR.surv       <- merge(WR.surv, reltimes, by = "Release", all.x = T)
  WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = "1970-01-01")
  benicia$RelDT <- as.POSIXct(benicia$RelDT)

  # remove old benicia record for this studyID
  benicia <- benicia[!benicia$StudyID == unique(detects_study$Study_ID),]
  benicia <- rbind(benicia, data.frame(WR.surv, StudyID = unique(detects_study$Study_ID), data_quality = quality))

  write.csv(benicia, "benicia_surv.csv", row.names = F, quote = F) 
}



4. Detections statistics at all realtime receivers


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"

} else {
  arrivals <- detects_study %>%
              group_by(general_location, TagCode) %>%
              summarise(DateTime_PST = min(DateTime_PST)) %>%
              arrange(TagCode)

  tag_stats <- arrivals %>%
               group_by(general_location) %>%
               summarise(First_arrival = min(DateTime_PST),
                         Mean_arrival = mean(DateTime_PST),
                         Last_arrival = max(DateTime_PST),
                         Fish_count = length(unique(TagCode))) %>%
               mutate(Percent_arrived = round(Fish_count/nrow(study_tagcodes) * 100,2)) %>%
               dplyr::left_join(., unique(detects_study[,c("general_location", "river_km")])) %>%
               arrange(desc(river_km)) %>%
               mutate(First_arrival = format(First_arrival, tz = "Etc/GMT+8"),
                      Mean_arrival = format(Mean_arrival, tz = "Etc/GMT+8"),
                      Last_arrival = format(Last_arrival, tz = "Etc/GMT+8")) %>%
               na.omit()

  print(kable(tag_stats, row.names = F,
              caption = "4.1 Detections for all releases combined",
              "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

  count <- 0

  for(j in sort(unique(study_tagcodes$Release))){

    if(nrow(detects_study[detects_study$Release == j,]) > 0){
      count <- count + 1
      arrivals1 <- detects_study %>%
                   filter(Release == j) %>%
                   group_by(general_location, TagCode) %>%
                   summarise(DateTime_PST = min(DateTime_PST)) %>%
                   arrange(TagCode)

      rel_count <- nrow(study_tagcodes[study_tagcodes$Release == j,])

      tag_stats1 <- arrivals1 %>%
                    group_by(general_location) %>%
                    summarise(First_arrival = min(DateTime_PST),
                              Mean_arrival = mean(DateTime_PST),
                              Last_arrival = max(DateTime_PST),
                              Fish_count = length(unique(TagCode))) %>%
                    mutate(Percent_arrived = round(Fish_count/rel_count * 100,2)) %>%
                    dplyr::left_join(., unique(detects_study[,c("general_location", "river_km")])) %>%
                    arrange(desc(river_km)) %>%
                    mutate(First_arrival = format(First_arrival, tz = "Etc/GMT+8"),
                           Mean_arrival = format(Mean_arrival, tz = "Etc/GMT+8"),
                           Last_arrival = format(Last_arrival, tz = "Etc/GMT+8")) %>%
                    na.omit()

      final_stats <- kable(tag_stats1, row.names = F,
            caption = paste("4.2.", count, " Detections for ", j, " release groups", sep = ""),
            "html")
      print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

    } else {
      cat("\n\n\\pagebreak\n")
      print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
      cat("\n\n\\pagebreak\n")
    }
  }
}
4.1 Detections for all releases combined
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
MeridianBr 2024-05-04 17:07:21 2024-05-04 17:07:21 2024-05-04 17:07:21 1 0.39 290.848
TowerBridge 2024-04-13 14:47:46 2024-04-19 06:43:24 2024-04-27 22:25:30 41 15.83 172.000
I80-50_Br 2024-04-13 15:14:43 2024-04-19 19:51:26 2024-04-30 00:39:22 44 16.99 170.748
SacRiverWalnutGrove_2 2024-04-14 07:25:01 2024-04-20 05:10:56 2024-04-30 19:37:33 41 15.83 120.300
Georg_Sl_1 2024-04-23 00:03:22 2024-04-23 00:03:22 2024-04-23 00:03:22 1 0.39 119.600
Sac_BlwGeorgiana 2024-04-14 07:54:09 2024-04-20 03:57:00 2024-04-30 20:14:36 40 15.44 119.058
Sac_BlwGeorgiana2 2024-04-14 08:07:53 2024-04-20 04:10:50 2024-04-30 20:34:41 40 15.44 118.398
Benicia_east 2024-04-17 14:15:40 2024-04-22 03:18:37 2024-04-26 10:50:18 21 8.11 52.240
Benicia_west 2024-04-17 14:20:30 2024-04-22 06:46:19 2024-04-26 10:55:04 16 6.18 52.040
4.2.1 Detections for Butte sink central route release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
MeridianBr 2024-05-04 17:07:21 2024-05-04 17:07:21 2024-05-04 17:07:21 1 1 290.848
TowerBridge 2024-04-15 02:52:38 2024-04-19 12:34:42 2024-04-27 22:25:30 13 13 172.000
I80-50_Br 2024-04-14 13:22:40 2024-04-20 10:57:14 2024-04-30 00:39:22 15 15 170.748
SacRiverWalnutGrove_2 2024-04-15 05:54:19 2024-04-20 20:41:05 2024-04-30 19:37:33 14 14 120.300
Sac_BlwGeorgiana 2024-04-15 06:15:35 2024-04-20 21:08:09 2024-04-30 20:14:36 14 14 119.058
Sac_BlwGeorgiana2 2024-04-15 06:27:55 2024-04-20 21:23:27 2024-04-30 20:34:41 14 14 118.398
Benicia_east 2024-04-20 06:52:41 2024-04-22 05:19:02 2024-04-26 10:50:18 8 8 52.240
Benicia_west 2024-04-20 06:57:14 2024-04-22 10:51:16 2024-04-26 10:55:04 7 7 52.040
4.2.2 Detections for Butte sink east route release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
TowerBridge 2024-04-13 14:47:46 2024-04-18 02:47:58 2024-04-26 22:55:57 17 17.71 172.000
I80-50_Br 2024-04-13 15:14:43 2024-04-18 08:50:10 2024-04-26 23:18:28 16 16.67 170.748
SacRiverWalnutGrove_2 2024-04-14 07:25:01 2024-04-19 00:34:17 2024-04-27 15:35:54 17 17.71 120.300
Sac_BlwGeorgiana 2024-04-14 07:54:09 2024-04-19 00:59:56 2024-04-27 16:01:47 17 17.71 119.058
Sac_BlwGeorgiana2 2024-04-14 08:07:53 2024-04-19 01:12:24 2024-04-27 16:14:51 17 17.71 118.398
Benicia_east 2024-04-17 14:15:40 2024-04-21 21:43:03 2024-04-25 20:50:28 8 8.33 52.240
Benicia_west 2024-04-17 14:20:30 2024-04-22 07:37:44 2024-04-25 21:24:50 7 7.29 52.040
4.2.3 Detections for Butte sink west route release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
TowerBridge 2024-04-16 23:10:16 2024-04-20 18:57:33 2024-04-24 04:36:01 11 17.46 172.000
I80-50_Br 2024-04-16 17:06:02 2024-04-20 21:32:28 2024-04-26 01:57:23 13 20.63 170.748
SacRiverWalnutGrove_2 2024-04-17 08:58:08 2024-04-21 08:07:03 2024-04-24 22:37:44 10 15.87 120.300
Georg_Sl_1 2024-04-23 00:03:22 2024-04-23 00:03:22 2024-04-23 00:03:22 1 1.59 119.600
Sac_BlwGeorgiana 2024-04-17 09:19:42 2024-04-21 04:07:30 2024-04-24 23:05:54 9 14.29 119.058
Sac_BlwGeorgiana2 2024-04-17 09:30:52 2024-04-21 04:21:35 2024-04-24 23:22:07 9 14.29 118.398
Benicia_east 2024-04-20 05:20:28 2024-04-22 09:02:50 2024-04-25 06:14:21 5 7.94 52.240
Benicia_west 2024-04-20 07:08:35 2024-04-21 13:29:03 2024-04-22 19:49:32 2 3.17 52.040


library(dplyr)
library(dbplyr)
library(DBI)
library(odbc)
library(data.table)

# Create connection with cloud database
con <- dbConnect(odbc(),
                Driver = "SQL Server",
                Server = "calfishtrack-server.database.windows.net",
                Database = "realtime_detections",
                UID = "realtime_user",
                PWD = "Pass@123",
                Port = 1433)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

# THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"

} else {
  arrivals <- detects_study %>%
              group_by(general_location, TagCode) %>%
              summarise(DateTime_PST = min(DateTime_PST)) %>%
              mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8"))

  # Use dbplyr to load realtime_locs and qryHexCodes sql table
  gen_locs <- tbl(con, "realtime_locs") %>% collect()
  # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)

  beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
                   mutate(day = as.Date(day)) %>%
                   filter(TagCode == beacon) %>% # Now subset to only look at data for the correct beacon for that day
                   filter(day >= as.Date(min(study_tagcodes$release_time)) & 
                          day <= endtime) %>% # Now only keep beacon by day for days since fish were released
                   dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")

  arrivals_per_day <- arrivals %>%
                      group_by(day, general_location) %>%
                      summarise(New_arrivals = length(TagCode)) %>%
                      arrange(general_location) %>% na.omit() %>%
                      mutate(day = as.Date(day)) %>%
                      dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]),
                                       ., by = c("general_location", "day")) %>%
                      arrange(general_location, day) %>%
                      mutate(day = factor(day)) %>%
                      filter(general_location != "Bench_test") %>% # Remove bench test and other NA locations
                      filter(!(is.na(general_location))) %>%
                      arrange(desc(rkm)) %>% # Change order of data to plot decreasing river_km
                      mutate(general_location = factor(general_location, unique(general_location)))

  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))

  crosstab <- xtabs(formula = arrivals_per_day$New_arrivals ~ arrivals_per_day$day + arrivals_per_day$general_location,
                    addNA =T)
  crosstab[is.na(crosstab)] <- ""
  crosstab[crosstab==0] <- NA
  crosstab <- as.data.frame.matrix(crosstab)

  kable(crosstab, align = "c", caption = "4.3 Fish arrivals per day (\"NA\" means receivers were non-operational)") %>%
    kable_styling(c("striped", "condensed"), font_size = 11, full_width = F, position = "left", fixed_thead = TRUE) %>%
    column_spec(column = 1:ncol(crosstab),width_min = "50px",border_left = T, border_right = T) %>%
    column_spec(1, bold = T, width_min = "75px")%>%
    scroll_box(height = "700px")
}
4.3 Fish arrivals per day (“NA” means receivers were non-operational)
Blw_Salt_RT MeridianBr Stan_Valley_Oak TowerBridge I80-50_Br MiddleRiver Clifton_Court_US_Radial_Gates Holland_Cut_Quimby CVP_Tank CVP_Trash_Rack_1 Clifton_Court_Intake_Canal Old_River_Quimby SacRiverWalnutGrove_2 Georg_Sl_1 Sac_BlwGeorgiana Sac_BlwGeorgiana2 Benicia_east Benicia_west
2024-04-10
2024-04-11
2024-04-12
2024-04-13 3 3
2024-04-14 3 3 3 3 3
2024-04-15 5 5 4 4 4
2024-04-16 3 4 5 5 5
2024-04-17 2 1 3 3 3 1 1
2024-04-18 6 6 2 2 2
2024-04-19 2 2 5 5 5 2 1
2024-04-20 2 2 2 5 3
2024-04-21 3 4 1 1 1 4 4
2024-04-22 7 7 5 4 4 2 2
2024-04-23 3 2 4 1 4 4 2
2024-04-24 2 2 3 3 4 1
2024-04-25 1 1 4 3
2024-04-26 1 2 1 1
2024-04-27 1 1 1 1 1
2024-04-28 1 1 1 1
2024-04-29
2024-04-30 1 1 1 1
2024-05-01
2024-05-02
2024-05-03
2024-05-04 1
2024-05-05
2024-05-06
2024-05-07
2024-05-08
2024-05-09
2024-05-10
2024-05-11
2024-05-12
2024-05-13
2024-05-14
2024-05-15
2024-05-16
2024-05-17
2024-05-18
2024-05-19
2024-05-20
2024-05-21
2024-05-22
2024-05-23
2024-05-24
2024-05-25
2024-05-26
2024-05-27
2024-05-28
2024-05-29
2024-05-30
2024-05-31
2024-06-01
2024-06-02
2024-06-03
2024-06-04
2024-06-05
2024-06-06
2024-06-07
2024-06-08
2024-06-09
2024-06-10
2024-06-11
2024-06-12
2024-06-13
2024-06-14
2024-06-15
2024-06-16
2024-06-17
2024-06-18
2024-06-19
2024-06-20
2024-06-21
2024-06-22
rm(list = ls())
cleanup(ask = F)



For questions or comments, please contact