Study is complete, all tags are no longer active. All times in Pacific Standard Time.
setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))
tagcodes <- as.data.frame(fread("qry_HexCodes.txt", stringsAsFactors = F))
tagcodes$RelDT <- as.POSIXct(tagcodes$RelDT, format = "%m/%d/%Y %I:%M:%S %p", tz = "Etc/GMT+8")
latest <- read.csv("latest_download.csv", stringsAsFactors = F)
study_tagcodes <- tagcodes[tagcodes$StudyID == "Putah_Creek_PKM_2020",]
if (nrow(study_tagcodes) == 0){
cat("Project has not yet begun")
}else{
cat(paste("Project began on ", min(study_tagcodes$RelDT), ", see tagging details below:", sep = ""))
study_tagcodes$Release <- "Release 1"
release_stats <- aggregate(list(First_release_time = study_tagcodes$RelDT),
by= list(Release = study_tagcodes$Release),
FUN = min)
release_stats <- merge(release_stats,
aggregate(list(Last_release_time = study_tagcodes$RelDT),
by= list(Release = study_tagcodes$Release),
FUN = max),
by = c("Release"))
release_stats <- merge(release_stats, aggregate(list(Number_fish_released =
study_tagcodes$TagID_Hex),
by= list(Release = study_tagcodes$Release),
FUN = function(x) {length(unique(x))}),
by = c("Release"))
release_stats <- merge(release_stats,
aggregate(list(Release_location = study_tagcodes$Rel_loc),
by= list(Release = study_tagcodes$Release),
FUN = function(x) {head(x,1)}),
by = c("Release"))
release_stats <- merge(release_stats,
aggregate(list(Release_rkm = study_tagcodes$Rel_rkm),
by= list(Release = study_tagcodes$Release),
FUN = function(x) {head(x,1)}),
by = c("Release"))
release_stats <- merge(release_stats,
aggregate(list(Mean_length = study_tagcodes$Length),
by= list(Release = study_tagcodes$Release),
FUN = mean, na.rm = T),
by = c("Release"))
release_stats <- merge(release_stats,
aggregate(list(Mean_weight = study_tagcodes$Weight),
by= list(Release = study_tagcodes$Release),
FUN = mean, na.rm = T),
by = c("Release"))
release_stats2<-release_stats[,-3]
colnames(release_stats2)[2]<-"Release time"
release_stats[,c("Mean_length", "Mean_weight")] <- round(release_stats[,c("Mean_length", "Mean_weight")],1)
release_stats$First_release_time <- format(release_stats$First_release_time, tz = "Etc/GMT+8")
release_stats$Last_release_time <- format(release_stats$Last_release_time, tz = "Etc/GMT+8")
kable(release_stats, format = "html") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left")
}
Project began on 2020-04-22 11:30:00, see tagging details below:
Release | First_release_time | Last_release_time | Number_fish_released | Release_location | Release_rkm | Mean_length | Mean_weight |
---|---|---|---|---|---|---|---|
Release 1 | 2020-04-22 11:30:00 | 2020-05-20 11:50:00 | 62 | Russell Ranch | 168.9 | 88.5 | 7.2 |
setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))
library(cder)
library(reshape2)
detects_study <- fread(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products\\Study_detection_files\\detects_Putah_Creek_PKM_2020.csv", sep = ""), colClasses = c(DateTime_PST = "character", RelDT = "character"))
if (nrow(detects_study) == 0){
"No detections yet"
} else {
study_count <- nrow(study_tagcodes)
gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)
arrivals <- aggregate(list(DateTime_PST = detects_study$DateTime_PST), by = list(general_location = detects_study$general_location, TagCode = detects_study$TagCode), FUN = min)
tag_stats <- aggregate(list(First_arrival = arrivals$DateTime_PST),
by= list(general_location = arrivals$general_location),
FUN = min)
tag_stats <- merge(tag_stats,
aggregate(list(Mean_arrival = arrivals$DateTime_PST),
by= list(general_location = arrivals$general_location),
FUN = mean),
by = c("general_location"))
tag_stats <- merge(tag_stats,
aggregate(list(Last_arrival = arrivals$DateTime_PST),
by= list(general_location = arrivals$general_location),
FUN = max),
by = c("general_location"))
tag_stats <- merge(tag_stats,
aggregate(list(Fish_count = arrivals$TagCode),
by= list(general_location = arrivals$general_location),
FUN = function(x) {length(unique(x))}),
by = c("general_location"))
tag_stats$Percent_arrived <- round(tag_stats$Fish_count/study_count * 100,2)
tag_stats <- merge(tag_stats, unique(gen_locs[,c("general_location", "rkm")]))
tag_stats <- tag_stats[order(tag_stats$rkm, decreasing = T),]
tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")
print(kable(tag_stats, row.names = F,
caption = "4.1 Detections for all releases combined",
"html") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
for (j in sort(unique(study_tagcodes$Release))) {
if(nrow(detects_study[detects_study$Release == j,]) > 0 ) {
temp <- detects_study[detects_study$Release == j,]
arrivals1 <- aggregate(list(DateTime_PST = temp$DateTime_PST), by = list(general_location = temp$general_location, TagCode = temp$TagCode), FUN = min)
rel_count <- nrow(study_tagcodes[study_tagcodes$Release == j,])
tag_stats1 <- aggregate(list(First_arrival = arrivals1$DateTime_PST),
by= list(general_location = arrivals1$general_location),
FUN = min)
tag_stats1 <- merge(tag_stats1,
aggregate(list(Mean_arrival = arrivals1$DateTime_PST),
by= list(general_location = arrivals1$general_location),
FUN = mean),
by = c("general_location"))
tag_stats1 <- merge(tag_stats1,
aggregate(list(Last_arrival = arrivals1$DateTime_PST),
by= list(general_location = arrivals1$general_location),
FUN = max),
by = c("general_location"))
tag_stats1 <- merge(tag_stats1,
aggregate(list(Fish_count = arrivals1$TagCode),
by= list(general_location = arrivals1$general_location),
FUN = function(x) {length(unique(x))}),
by = c("general_location"))
tag_stats1$Percent_arrived <- round(tag_stats1$Fish_count/rel_count * 100,2)
tag_stats1 <- merge(tag_stats1, unique(gen_locs[,c("general_location", "rkm")]))
tag_stats1 <- tag_stats1[order(tag_stats1$rkm, decreasing = T),]
tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")
final_stats <- kable(tag_stats1, row.names = F,
caption = paste("4.2 Detections for",j,"release groups", sep = " "),
"html")
print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
} else {
cat("\n\n\\pagebreak\n")
print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
cat("\n\n\\pagebreak\n")
}
}
}
[1] “No detections yet”
## Set fig height for next plot here, based on how long fish have been at large
figheight <- min(10,max(c(3,as.numeric(difftime(Sys.Date(), min(study_tagcodes$RelDT), units = "days")) / 4)))
setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))
if (nrow(detects_study) == 0){
"No detections yet"
} else {
beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F)
beacon_by_day$day <- as.Date(beacon_by_day$day)
arrivals$day <- as.Date(format(arrivals$DateTime_PST, "%Y-%m-%d"))
arrivals_per_day <- aggregate(list(New_arrivals = arrivals$TagCode), by = list(day = arrivals$day, general_location = arrivals$general_location), length)
arrivals_per_day$day <- as.Date(arrivals_per_day$day)
## Now subset to only look at data for the correct beacon for that day
beacon_by_day <- as.data.frame(beacon_by_day[which(beacon_by_day$TagCode == beacon_by_day$beacon),])
## Now only keep beacon by day for days since fish were released
beacon_by_day <- beacon_by_day[beacon_by_day$day >= as.Date(min(study_tagcodes$RelDT)) & beacon_by_day$day <= endtime,]
beacon_by_day <- merge(beacon_by_day, gen_locs[,c("location", "general_location","rkm")], by = "location", all.x = T)
arrivals_per_day <- merge(beacon_by_day, arrivals_per_day, all.x = T, by = c("general_location", "day"))
arrivals_per_day$day <- factor(arrivals_per_day$day)
## Remove bench test and other NA locations
arrivals_per_day <- arrivals_per_day[!arrivals_per_day$general_location == "Bench_test",]
arrivals_per_day <- arrivals_per_day[is.na(arrivals_per_day$general_location) == F,]
## Change order of data to plot decreasing rkm
arrivals_per_day <- arrivals_per_day[order(arrivals_per_day$rkm, decreasing = T),]
arrivals_per_day$general_location <- factor(arrivals_per_day$general_location, unique(arrivals_per_day$general_location))
ggplot(data=arrivals_per_day, aes(x=general_location, y=fct_rev(as_factor(day)))) +
geom_tile(fill = "lightgray", color = "black") +
geom_text(aes(label=New_arrivals)) +
labs(x="General Location", y = "Date") +
theme(panel.background = element_blank(), axis.text.x = element_text(angle = 90, hjust = 1))
}
[1] “No detections yet”
rm(list = ls())