Study is complete, all tags are no longer active as of 2023-12-13. All times in Pacific Standard Time.
Study began on 2023-03-07 14:45:00, see tagging details below:Release | First_release_time | Last_release_time | Number_fish_released | Release_location | Release_rkm | Mean_length | Mean_weight |
---|---|---|---|---|---|---|---|
Knights_Ferry | 2023-03-07 14:45:00 | 2023-04-19 13:26:39 | 198 | Knights_Ferry | 284.5 | 217.3 | 124.2 |
library(leaflet)
library(maps)
library(htmlwidgets)
library(leaflet.extras)
try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))
## THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
"No detections yet"
} else {
gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)
endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))
beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
mutate(day = as.Date(day)) %>%
# Subset to only look at data for the correct beacon for that day
filter(TagCode == beacon) %>%
# Only keep beacon by day for days since fish were released
filter(day >= as.Date(min(study_tagcodes$release_time)) & day <= endtime) %>%
dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")
arrivals_per_day <- detects_study %>%
group_by(general_location, TagCode) %>%
summarise(DateTime_PST = min(DateTime_PST, na.rm = T)) %>%
arrange(TagCode, general_location) %>%
mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8")) %>%
group_by(day, general_location) %>%
summarise(New_arrivals = length(TagCode)) %>%
na.omit() %>%
mutate(day = as.Date(day)) %>%
dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]), .,
by = c("general_location", "day")) %>%
arrange(general_location, day) %>%
mutate(day = as.factor(day)) %>%
filter(general_location != "Bench_test") %>% # Remove bench test
filter(!(is.na(general_location))) # Remove NA locations
## Remove sites that were not operation the whole time
#### FOR THE SEASONAL SURVIVAL PAGE, KEEP ALL SITES SINCE PEOPLE WANT TO SEE DETECTIONS OF LATER FISH AT NEWLY
#### DEPLOYED SPOTS
gen_locs_days_in_oper <- arrivals_per_day %>%
group_by(general_location) %>%
summarise(days_in_oper = length(day))
#gen_locs_days_in_oper <- gen_locs_days_in_oper[gen_locs_days_in_oper$days_in_oper ==
# max(gen_locs_days_in_oper$days_in_oper),]
arrivals_per_day_in_oper <- arrivals_per_day %>%
filter(general_location %in% gen_locs_days_in_oper$general_location)
fish_per_site <- arrivals_per_day_in_oper %>%
group_by(general_location) %>%
summarise(fish_count = sum(New_arrivals, na.rm=T))
gen_locs_mean_coords <- gen_locs %>%
filter(is.na(stop) & general_location %in% fish_per_site$general_location) %>%
group_by(general_location) %>%
summarise(latitude = mean(latitude), # estimate mean lat and lons for each genloc
longitude = mean(longitude))
fish_per_site <- merge(fish_per_site, gen_locs_mean_coords)
icons <- awesomeIcons(iconColor = "lightblue",
text = fish_per_site$fish_count)
leaflet(data = fish_per_site) %>%
addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
# Marker data are from the sites data frame. We need the ~ symbols
# to indicate the columns of the data frame.
addMarkers(~longitude, ~latitude, label = ~fish_count, group = "Receiver Sites", popup = ~general_location,
labelOptions = labelOptions(noHide = T, textsize = "15px")) %>%
addScaleBar(position = "bottomleft") %>%
addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"),
options = layersControlOptions(collapsed = FALSE))
}
2.1 Map of unique fish detections at operational realtime detection locations
try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) > 0){
detects_study <- detects_study[order(detects_study$TagCode, detects_study$DateTime_PST),]
## Now estimate the time in hours between the previous and next detection, for each detection.
detects_study$prev_genloc <- shift(detects_study$general_location, fill = NA, type = "lag")
#detects_study$prev_genloc <- shift(detects_study$General_Location, fill = NA, type = "lag")
## Now make NA the time diff values when it's between 2 different tagcodes or genlocs
detects_study[which(detects_study$TagCode != shift(detects_study$TagCode, fill = NA, type = "lag")), "prev_genloc"] <- NA
detects_study[which(detects_study$general_location != detects_study$prev_genloc), "prev_genloc"] <- NA
detects_study$mov_score <- 0
detects_study[is.na(detects_study$prev_genloc), "mov_score"] <- 1
detects_study$mov_counter <- cumsum(detects_study$mov_score)
detects_summary <- aggregate(list(first_detect = detects_study$DateTime_PST), by = list(TagCode = detects_study$TagCode, length = detects_study$length, release_time = detects_study$release_time, mov_counter = detects_study$mov_counter ,general_location = detects_study$general_location, river_km = detects_study$river_km, release_rkm = detects_study$release_rkm), min)
detects_summary <- detects_summary[is.na(detects_summary$first_detect) == F,]
releases <- aggregate(list(first_detect = detects_summary$release_time), by = list(TagCode = detects_summary$TagCode, length = detects_summary$length, release_time = detects_summary$release_time, release_rkm = detects_summary$release_rkm), min)
releases$river_km <- releases$release_rkm
releases$mov_counter <- NA
releases$general_location <- NA
detects_summary <- rbindlist(list(detects_summary, releases), use.names = T)
detects_summary <- detects_summary[order(detects_summary$TagCode, detects_summary$first_detect),]
starttime <- as.Date(min(detects_study$release_time), "Etc/GMT+8")
## Endtime should be either now, or end of predicted tag life, whichever comes first
endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d"))+1, max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))
#par(mar=c(6, 5, 2, 5) + 0.1)
plot_ly(detects_summary, width = 900, height = 600, dynamicTicks = TRUE) %>%
add_lines(x = ~first_detect, y = ~river_km, color = ~TagCode) %>%
add_markers(x = ~first_detect, y = ~river_km, color = ~TagCode, showlegend = F) %>%
layout(showlegend = T,
xaxis = list(title = "<b> Date <b>", mirror=T,ticks="outside",showline=T, range=c(starttime,endtime)),
yaxis = list(title = "<b> Kilometers upstream of the Golden Gate <b>", mirror=T,ticks="outside",showline=T, range=c(max(detects_study$Rel_rkm)+10, min(gen_locs[is.na(gen_locs$stop),"rkm"])-10)),
legend = list(title=list(text='<b> Tag Code </b>')),
margin=list(l = 50,r = 100,b = 50,t = 50)
)
}else{
plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Kilometers upstream of the Golden Gate")
text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}
2.2 Waterfall Detection Plot
_______________________________________________________________________________________________________
library(tidyr)
try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))
detects_3 <- detects_study %>% filter(general_location == "Benicia_west" | general_location == "Benicia_east")
if(nrow(detects_3) == 0){
plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
detects_3 <- detects_3 %>%
dplyr::left_join(., detects_3 %>%
group_by(TagCode) %>%
summarise(first_detect = min(DateTime_PST))) %>%
mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))
starttime <- as.Date(min(detects_3$release_time), "Etc/GMT+8")
# Endtime should be either now, or end of predicted tag life, whichever comes first
endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))
daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))
rels <- unique(study_tagcodes$Release)
rel_num <- length(rels)
rels_no_detects <- as.character(rels[!(rels %in% unique(detects_3$Release))])
tagcount1 <- detects_3 %>%
group_by(Day, Release) %>%
summarise(unique_tags = length(unique(TagCode))) %>%
spread(Release, unique_tags)
daterange1 <- merge(daterange, tagcount1, all.x=T)
daterange1[is.na(daterange1)] <- 0
if(length(rels_no_detects)>0){
for(i in rels_no_detects){
daterange1 <- cbind(daterange1, x=NA)
names(daterange1)[names(daterange1) == "x"] <- paste(i)
}
}
## reorder columns in alphabetical order so its coloring in barplots is consistent
daterange1 <- daterange1[,order(colnames(daterange1))]
daterange2 <- daterange1
rownames(daterange2) <- daterange2$Day
daterange2$Day <- NULL
par(mar=c(6, 5, 2, 5) + 0.1)
daterange2$Date <- as.Date(row.names(daterange2))
daterange3 <- melt(daterange2, id.vars = "Date", variable.name = ".", )
daterange3$. <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))
plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
add_bars(x = ~Date, y = ~value, color = ~.) %>%
add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
x=0.01, xanchor="left",
y=1.056, yanchor="top", # Same y as legend below
legendtitle=TRUE, showarrow=FALSE ) %>%
layout(showlegend = T,
barmode = "stack",
xaxis = list(title = "Date", mirror=T,ticks="outside",showline=T),
yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks="outside",showline=T),
legend = list(orientation = "h",x = 0.34, y = 1.066),
margin=list(l = 50,r = 100,b = 50,t = 50))
}
2.3 Detections at Benicia Bridge for duration of tag life
try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))
try(benicia <- read.csv("benicia_surv.csv", stringsAsFactors = F))
detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]
endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))
if(nrow(detects_benicia) == 0){
if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
WR.surv <- data.frame("Release"="ALL", "estimate"=0, "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
} else {
WR.surv <- data.frame("Release"=NA, "estimate"="NO DETECTIONS YET", "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
}
WR.surv1 <- WR.surv
colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
print(kable(WR.surv1, row.names = F, "html", caption = "3.1 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
} else if(length(table(detects_benicia$general_location)) == 1){
if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
WR.surv <- data.frame("Release"="ALL", "estimate"=round(length(unique(detects_benicia$TagCode))/length(unique(detects_study$TagCode))*100,1),
"se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
} else {
WR.surv <- data.frame("Release" = NA, "estimate" = "NOT ENOUGH DETECTIONS", "se" = NA, "lcl" = NA, "ucl" = NA, "Detection_efficiency" = NA)
}
WR.surv1 <- WR.surv
colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
print(kable(WR.surv1, row.names = F, "html", caption = "3.1 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
} else {
# Only do survival to Benicia here
test3 <- detects_study[which(detects_study$river_km < 53),]
# Create inp for survival estimation
inp <- as.data.frame(reshape2::dcast(test3, TagCode ~ river_km, fun.aggregate = length))
# Sort columns by river km in descending order
# Count number of genlocs
gen_loc_sites <- ncol(inp)-1
inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]
inp <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)
inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]
inp2[is.na(inp2)] <- 0
inp2[inp2 > 0] <- 1
inp <- cbind(inp, inp2)
groups <- as.character(sort(unique(inp$Release)))
groups_w_detects <- names(table(test3$Release))
inp[,groups] <- 0
for(i in groups){
inp[as.character(inp$Release) == i, i] <- 1
}
inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")
if(length(groups) > 1){
# make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)
WR.process <- process.data(inp.df, model="CJS", begin.time=1)
WR.ddl <- make.design.data(WR.process)
WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)
if(length(groups_w_detects) > 1){
WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")
WR.ddl <- make.design.data(WR.process)
WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)
} else {
WR.process <- process.data(inp.df, model="CJS", begin.time=1)
WR.ddl <- make.design.data(WR.process)
WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
}
WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
WR.surv.rel <- cbind(Release = groups_w_detects, round(WR.mark.rel$results$real[seq(from=1,to=length(groups_w_detects)*2,by = 2),
c("estimate", "se", "lcl", "ucl")] * 100,1))
WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
WR.surv <- rbind(WR.surv, WR.surv.rel)
} else {
inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)
WR.process <- process.data(inp.df, model="CJS", begin.time=1)
WR.ddl <- make.design.data(WR.process)
WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
WR.surv <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
}
WR.surv$Detection_efficiency <- NA
WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
WR.surv1 <- WR.surv
colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
print(kable(WR.surv1, row.names = F, "html", caption = "3.1 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
}
Release Group | Survival (%) | SE | 95% lower C.I. | 95% upper C.I. | Detection efficiency (%) |
---|---|---|---|---|---|
ALL | 0.5 | 0.5 | 0.1 | 3.5 | 100 |
Knights_Ferry | 0.5 | 0.5 | 0.1 | 3.5 | NA |
if(exists("benicia")==T & is.numeric(WR.surv1[1,2])){
# Find mean release time per release group, and ALL
reltimes <- aggregate(list(RelDT = study_tagcodes$release_time), by = list(Release = study_tagcodes$Release), FUN = mean)
reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$release_time)))
# Assign whether the results are tentative or final
quality <- "tentative"
if(endtime < as.Date(format(Sys.time(), "%Y-%m-%d"))){
quality <- "final"
}
WR.surv <- merge(WR.surv, reltimes, by = "Release", all.x = T)
WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = "1970-01-01")
benicia$RelDT <- as.POSIXct(benicia$RelDT)
# remove old benicia record for this studyID
benicia <- benicia[!benicia$StudyID == unique(detects_study$Study_ID),]
benicia <- rbind(benicia, data.frame(WR.surv, StudyID = unique(detects_study$Study_ID), data_quality = quality))
write.csv(benicia, "benicia_surv.csv", row.names = F, quote = F)
}
try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))
if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
"No detections yet"
} else {
arrivals <- detects_study %>%
group_by(general_location, TagCode) %>%
summarise(DateTime_PST = min(DateTime_PST)) %>%
arrange(TagCode)
tag_stats <- arrivals %>%
group_by(general_location) %>%
summarise(First_arrival = min(DateTime_PST),
Mean_arrival = mean(DateTime_PST),
Last_arrival = max(DateTime_PST),
Fish_count = length(unique(TagCode))) %>%
mutate(Percent_arrived = round(Fish_count/nrow(study_tagcodes) * 100,2)) %>%
dplyr::left_join(., unique(detects_study[,c("general_location", "river_km")])) %>%
arrange(desc(river_km)) %>%
mutate(First_arrival = format(First_arrival, tz = "Etc/GMT+8"),
Mean_arrival = format(Mean_arrival, tz = "Etc/GMT+8"),
Last_arrival = format(Last_arrival, tz = "Etc/GMT+8")) %>%
na.omit()
print(kable(tag_stats, row.names = F,
caption = "4.1 Detections for all releases combined",
"html") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
count <- 0
for(j in sort(unique(study_tagcodes$Release))){
if(nrow(detects_study[detects_study$Release == j,]) > 0){
count <- count + 1
arrivals1 <- detects_study %>%
filter(Release == j) %>%
group_by(general_location, TagCode) %>%
summarise(DateTime_PST = min(DateTime_PST)) %>%
arrange(TagCode)
rel_count <- nrow(study_tagcodes[study_tagcodes$Release == j,])
tag_stats1 <- arrivals1 %>%
group_by(general_location) %>%
summarise(First_arrival = min(DateTime_PST),
Mean_arrival = mean(DateTime_PST),
Last_arrival = max(DateTime_PST),
Fish_count = length(unique(TagCode))) %>%
mutate(Percent_arrived = round(Fish_count/rel_count * 100,2)) %>%
dplyr::left_join(., unique(detects_study[,c("general_location", "river_km")])) %>%
arrange(desc(river_km)) %>%
mutate(First_arrival = format(First_arrival, tz = "Etc/GMT+8"),
Mean_arrival = format(Mean_arrival, tz = "Etc/GMT+8"),
Last_arrival = format(Last_arrival, tz = "Etc/GMT+8")) %>%
na.omit()
final_stats <- kable(tag_stats1, row.names = F,
caption = paste("4.2.", count, " Detections for ", j, " release groups", sep = ""),
"html")
print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
} else {
cat("\n\n\\pagebreak\n")
print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
cat("\n\n\\pagebreak\n")
}
}
}
general_location | First_arrival | Mean_arrival | Last_arrival | Fish_count | Percent_arrived | river_km |
---|---|---|---|---|---|---|
CVP_Tank | 2023-05-23 13:38:11 | 2023-05-23 13:38:11 | 2023-05-23 13:38:11 | 1 | 0.51 | 144.531 |
CVP_Trash_Rack_1 | 2023-05-23 06:10:34 | 2023-05-23 06:10:34 | 2023-05-23 06:10:34 | 1 | 0.51 | 144.500 |
Benicia_east | 2023-05-25 00:51:58 | 2023-05-25 00:51:58 | 2023-05-25 00:51:58 | 1 | 0.51 | 52.240 |
Benicia_west | 2023-05-25 01:01:30 | 2023-05-25 01:01:30 | 2023-05-25 01:01:30 | 1 | 0.51 | 52.040 |
general_location | First_arrival | Mean_arrival | Last_arrival | Fish_count | Percent_arrived | river_km |
---|---|---|---|---|---|---|
CVP_Tank | 2023-05-23 13:38:11 | 2023-05-23 13:38:11 | 2023-05-23 13:38:11 | 1 | 0.51 | 144.531 |
CVP_Trash_Rack_1 | 2023-05-23 06:10:34 | 2023-05-23 06:10:34 | 2023-05-23 06:10:34 | 1 | 0.51 | 144.500 |
Benicia_east | 2023-05-25 00:51:58 | 2023-05-25 00:51:58 | 2023-05-25 00:51:58 | 1 | 0.51 | 52.240 |
Benicia_west | 2023-05-25 01:01:30 | 2023-05-25 01:01:30 | 2023-05-25 01:01:30 | 1 | 0.51 | 52.040 |
try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))
# THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
"No detections yet"
} else {
arrivals <- detects_study %>%
group_by(general_location, TagCode) %>%
summarise(DateTime_PST = min(DateTime_PST)) %>%
mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8"))
gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)
beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
mutate(day = as.Date(day)) %>%
filter(TagCode == beacon) %>% # Now subset to only look at data for the correct beacon for that day
filter(day >= as.Date(min(study_tagcodes$release_time)) &
day <= endtime) %>% # Now only keep beacon by day for days since fish were released
dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")
arrivals_per_day <- arrivals %>%
group_by(day, general_location) %>%
summarise(New_arrivals = length(TagCode)) %>%
arrange(general_location) %>% na.omit() %>%
mutate(day = as.Date(day)) %>%
dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]),
., by = c("general_location", "day")) %>%
arrange(general_location, day) %>%
mutate(day = factor(day)) %>%
filter(general_location != "Bench_test") %>% # Remove bench test and other NA locations
filter(!(is.na(general_location))) %>%
arrange(desc(rkm)) %>% # Change order of data to plot decreasing river_km
mutate(general_location = factor(general_location, unique(general_location)))
endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))
crosstab <- xtabs(formula = arrivals_per_day$New_arrivals ~ arrivals_per_day$day + arrivals_per_day$general_location,
addNA =T)
crosstab[is.na(crosstab)] <- ""
crosstab[crosstab==0] <- NA
crosstab <- as.data.frame.matrix(crosstab)
kable(crosstab, align = "c", caption = "4.3 Fish arrivals per day (\"NA\" means receivers were non-operational)") %>%
kable_styling(c("striped", "condensed"), font_size = 11, full_width = F, position = "left", fixed_thead = TRUE) %>%
column_spec(column = 1:ncol(crosstab),width_min = "50px",border_left = T, border_right = T) %>%
column_spec(1, bold = T, width_min = "75px")%>%
scroll_box(height = "700px")
}
Blw_Salt_RT | MeridianBr | TowerBridge | I80-50_Br | MiddleRiver | Clifton_Court_US_Radial_Gates | Holland_Cut_Quimby | CVP_Tank | CVP_Trash_Rack_1 | Clifton_Court_Intake_Canal | Old_River_Quimby | Sac_BlwGeorgiana | Sac_BlwGeorgiana2 | Benicia_east | Benicia_west | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2023-03-07 | |||||||||||||||
2023-03-08 | |||||||||||||||
2023-03-09 | |||||||||||||||
2023-03-10 | |||||||||||||||
2023-03-11 | |||||||||||||||
2023-03-12 | |||||||||||||||
2023-03-13 | |||||||||||||||
2023-03-14 | |||||||||||||||
2023-03-15 | NA | ||||||||||||||
2023-03-16 | NA | ||||||||||||||
2023-03-17 | NA | ||||||||||||||
2023-03-18 | NA | ||||||||||||||
2023-03-19 | NA | ||||||||||||||
2023-03-20 | |||||||||||||||
2023-03-21 | |||||||||||||||
2023-03-22 | |||||||||||||||
2023-03-23 | |||||||||||||||
2023-03-24 | |||||||||||||||
2023-03-25 | |||||||||||||||
2023-03-26 | |||||||||||||||
2023-03-27 | |||||||||||||||
2023-03-28 | |||||||||||||||
2023-03-29 | |||||||||||||||
2023-03-30 | |||||||||||||||
2023-03-31 | |||||||||||||||
2023-04-01 | |||||||||||||||
2023-04-02 | |||||||||||||||
2023-04-03 | |||||||||||||||
2023-04-04 | |||||||||||||||
2023-04-05 | |||||||||||||||
2023-04-06 | |||||||||||||||
2023-04-07 | |||||||||||||||
2023-04-08 | |||||||||||||||
2023-04-09 | |||||||||||||||
2023-04-10 | |||||||||||||||
2023-04-11 | |||||||||||||||
2023-04-12 | |||||||||||||||
2023-04-13 | |||||||||||||||
2023-04-14 | |||||||||||||||
2023-04-15 | |||||||||||||||
2023-04-16 | |||||||||||||||
2023-04-17 | |||||||||||||||
2023-04-18 | |||||||||||||||
2023-04-19 | |||||||||||||||
2023-04-20 | |||||||||||||||
2023-04-21 | |||||||||||||||
2023-04-22 | |||||||||||||||
2023-04-23 | |||||||||||||||
2023-04-24 | |||||||||||||||
2023-04-25 | |||||||||||||||
2023-04-26 | |||||||||||||||
2023-04-27 | |||||||||||||||
2023-04-28 | |||||||||||||||
2023-04-29 | |||||||||||||||
2023-04-30 | |||||||||||||||
2023-05-01 | |||||||||||||||
2023-05-02 | |||||||||||||||
2023-05-03 | |||||||||||||||
2023-05-04 | |||||||||||||||
2023-05-05 | |||||||||||||||
2023-05-06 | |||||||||||||||
2023-05-07 | |||||||||||||||
2023-05-08 | |||||||||||||||
2023-05-09 | |||||||||||||||
2023-05-10 | |||||||||||||||
2023-05-11 | |||||||||||||||
2023-05-12 | |||||||||||||||
2023-05-13 | |||||||||||||||
2023-05-14 | |||||||||||||||
2023-05-15 | |||||||||||||||
2023-05-16 | |||||||||||||||
2023-05-17 | |||||||||||||||
2023-05-18 | |||||||||||||||
2023-05-19 | |||||||||||||||
2023-05-20 | |||||||||||||||
2023-05-21 | |||||||||||||||
2023-05-22 | |||||||||||||||
2023-05-23 | 1 | 1 | |||||||||||||
2023-05-24 | |||||||||||||||
2023-05-25 | 1 | 1 | |||||||||||||
2023-05-26 | |||||||||||||||
2023-05-27 | |||||||||||||||
2023-05-28 | |||||||||||||||
2023-05-29 | |||||||||||||||
2023-05-30 | |||||||||||||||
2023-05-31 | |||||||||||||||
2023-06-01 | |||||||||||||||
2023-06-02 | |||||||||||||||
2023-06-03 | |||||||||||||||
2023-06-04 | |||||||||||||||
2023-06-05 | |||||||||||||||
2023-06-06 | |||||||||||||||
2023-06-07 | |||||||||||||||
2023-06-08 | |||||||||||||||
2023-06-09 | |||||||||||||||
2023-06-10 | |||||||||||||||
2023-06-11 | |||||||||||||||
2023-06-12 | |||||||||||||||
2023-06-13 | |||||||||||||||
2023-06-14 | |||||||||||||||
2023-06-15 | |||||||||||||||
2023-06-16 | |||||||||||||||
2023-06-17 | |||||||||||||||
2023-06-18 | |||||||||||||||
2023-06-19 | |||||||||||||||
2023-06-20 | |||||||||||||||
2023-06-21 | |||||||||||||||
2023-06-22 | |||||||||||||||
2023-06-23 | |||||||||||||||
2023-06-24 | |||||||||||||||
2023-06-25 | |||||||||||||||
2023-06-26 | |||||||||||||||
2023-06-27 | |||||||||||||||
2023-06-28 | |||||||||||||||
2023-06-29 | |||||||||||||||
2023-06-30 | |||||||||||||||
2023-07-01 | |||||||||||||||
2023-07-02 | |||||||||||||||
2023-07-03 | |||||||||||||||
2023-07-04 | |||||||||||||||
2023-07-05 | |||||||||||||||
2023-07-06 | |||||||||||||||
2023-07-07 | |||||||||||||||
2023-07-08 | |||||||||||||||
2023-07-09 | |||||||||||||||
2023-07-10 | |||||||||||||||
2023-07-11 | |||||||||||||||
2023-07-12 | |||||||||||||||
2023-07-13 | |||||||||||||||
2023-07-14 | |||||||||||||||
2023-07-15 | |||||||||||||||
2023-07-16 | |||||||||||||||
2023-07-17 | |||||||||||||||
2023-07-18 | |||||||||||||||
2023-07-19 | |||||||||||||||
2023-07-20 | |||||||||||||||
2023-07-21 | |||||||||||||||
2023-07-22 | |||||||||||||||
2023-07-23 | |||||||||||||||
2023-07-24 | |||||||||||||||
2023-07-25 | |||||||||||||||
2023-07-26 | |||||||||||||||
2023-07-27 | |||||||||||||||
2023-07-28 | NA | ||||||||||||||
2023-07-29 | NA | ||||||||||||||
2023-07-30 | NA | ||||||||||||||
2023-07-31 | NA | ||||||||||||||
2023-08-01 | NA | ||||||||||||||
2023-08-02 | NA | ||||||||||||||
2023-08-03 | NA | ||||||||||||||
2023-08-04 | NA | ||||||||||||||
2023-08-05 | NA | ||||||||||||||
2023-08-06 | NA | ||||||||||||||
2023-08-07 | NA | ||||||||||||||
2023-08-08 | NA | ||||||||||||||
2023-08-09 | NA | ||||||||||||||
2023-08-10 | NA | ||||||||||||||
2023-08-11 | NA | ||||||||||||||
2023-08-12 | NA | ||||||||||||||
2023-08-13 | NA | ||||||||||||||
2023-08-14 | NA | ||||||||||||||
2023-08-15 | NA | ||||||||||||||
2023-08-16 | NA | ||||||||||||||
2023-08-17 | NA | ||||||||||||||
2023-08-18 | NA | ||||||||||||||
2023-08-19 | NA | ||||||||||||||
2023-08-20 | NA | ||||||||||||||
2023-08-21 | NA | ||||||||||||||
2023-08-22 | NA | ||||||||||||||
2023-08-23 | NA | ||||||||||||||
2023-08-24 | NA | ||||||||||||||
2023-08-25 | NA | ||||||||||||||
2023-08-26 | NA | ||||||||||||||
2023-08-27 | NA | ||||||||||||||
2023-08-28 | NA | ||||||||||||||
2023-08-29 | NA | ||||||||||||||
2023-08-30 | NA | ||||||||||||||
2023-08-31 | NA | ||||||||||||||
2023-09-01 | NA | ||||||||||||||
2023-09-02 | NA | ||||||||||||||
2023-09-03 | NA | ||||||||||||||
2023-09-04 | NA | ||||||||||||||
2023-09-05 | NA | ||||||||||||||
2023-09-06 | NA | ||||||||||||||
2023-09-07 | NA | ||||||||||||||
2023-09-08 | NA | ||||||||||||||
2023-09-09 | NA | ||||||||||||||
2023-09-10 | NA | ||||||||||||||
2023-09-11 | NA | ||||||||||||||
2023-09-12 | NA | ||||||||||||||
2023-09-13 | NA | ||||||||||||||
2023-09-14 | |||||||||||||||
2023-09-15 | |||||||||||||||
2023-09-16 | |||||||||||||||
2023-09-17 | |||||||||||||||
2023-09-18 | |||||||||||||||
2023-09-19 | |||||||||||||||
2023-09-20 | |||||||||||||||
2023-09-21 | |||||||||||||||
2023-09-22 | |||||||||||||||
2023-09-23 | |||||||||||||||
2023-09-24 | |||||||||||||||
2023-09-25 | |||||||||||||||
2023-09-26 | |||||||||||||||
2023-09-27 | |||||||||||||||
2023-09-28 | |||||||||||||||
2023-09-29 | |||||||||||||||
2023-09-30 | |||||||||||||||
2023-10-01 | |||||||||||||||
2023-10-02 | |||||||||||||||
2023-10-03 | |||||||||||||||
2023-10-04 | |||||||||||||||
2023-10-05 | |||||||||||||||
2023-10-06 | |||||||||||||||
2023-10-07 | |||||||||||||||
2023-10-08 | |||||||||||||||
2023-10-09 | |||||||||||||||
2023-10-10 | |||||||||||||||
2023-10-11 | |||||||||||||||
2023-10-12 | |||||||||||||||
2023-10-13 | |||||||||||||||
2023-10-14 | |||||||||||||||
2023-10-15 | |||||||||||||||
2023-10-16 | |||||||||||||||
2023-10-17 | |||||||||||||||
2023-10-18 | |||||||||||||||
2023-10-19 | |||||||||||||||
2023-10-20 | |||||||||||||||
2023-10-21 | |||||||||||||||
2023-10-22 | |||||||||||||||
2023-10-23 | |||||||||||||||
2023-10-24 | |||||||||||||||
2023-10-25 | |||||||||||||||
2023-10-26 | |||||||||||||||
2023-10-27 | |||||||||||||||
2023-10-28 | |||||||||||||||
2023-10-29 | |||||||||||||||
2023-10-30 | |||||||||||||||
2023-10-31 | |||||||||||||||
2023-11-01 | |||||||||||||||
2023-11-02 | |||||||||||||||
2023-11-03 | |||||||||||||||
2023-11-04 | |||||||||||||||
2023-11-05 | |||||||||||||||
2023-11-06 | |||||||||||||||
2023-11-07 | |||||||||||||||
2023-11-08 | |||||||||||||||
2023-11-09 | |||||||||||||||
2023-11-10 | |||||||||||||||
2023-11-11 | |||||||||||||||
2023-11-12 | |||||||||||||||
2023-11-13 | |||||||||||||||
2023-11-14 | |||||||||||||||
2023-11-15 | NA | ||||||||||||||
2023-11-16 | NA | NA | |||||||||||||
2023-11-17 | NA | NA | |||||||||||||
2023-11-18 | NA | NA | |||||||||||||
2023-11-19 | NA | NA | |||||||||||||
2023-11-20 | NA | NA | |||||||||||||
2023-11-21 | NA | NA | |||||||||||||
2023-11-22 | NA | NA | |||||||||||||
2023-11-23 | NA | NA | |||||||||||||
2023-11-24 | NA | NA | |||||||||||||
2023-11-25 | NA | NA | |||||||||||||
2023-11-26 | NA | NA | |||||||||||||
2023-11-27 | NA | NA | |||||||||||||
2023-11-28 | NA | NA | |||||||||||||
2023-11-29 | NA | NA | |||||||||||||
2023-11-30 | NA | NA | |||||||||||||
2023-12-01 | NA | NA | |||||||||||||
2023-12-02 | NA | NA | |||||||||||||
2023-12-03 | NA | NA | |||||||||||||
2023-12-04 | NA | NA | |||||||||||||
2023-12-05 | NA | NA | |||||||||||||
2023-12-06 | NA | NA | |||||||||||||
2023-12-07 | NA | NA | |||||||||||||
2023-12-08 | NA | NA | |||||||||||||
2023-12-09 | NA | NA | |||||||||||||
2023-12-10 | NA | NA | |||||||||||||
2023-12-11 | NA | NA | |||||||||||||
2023-12-12 | NA | NA | |||||||||||||
2023-12-13 | NA | NA |
rm(list = ls())
cleanup(ask = F)
For questions or comments, please contact cyril.michel@noaa.gov