Central Valley Enhanced

Acoustic Tagging Project

logo





Adult Salmon Migration and Thermal Thresholds Study

2023-2024 Season (PROVISIONAL DATA)



1. Project Background


This is the first acoustic telemetry project in California’s Central Valley specifically focused on understanding the relationship between water temperatures and migration of adult Chinook salmon. This study, conducted by University of California - Santa Cruz, in affiliation with NMFS - Southwest Fisheries Science Center, and with funding from the CA Water Resources Control Board, is intended to inform potential water temperature targets to ensure successful migration of adult Chinook salmon through the Central Valley watershed. Currently, the literature on thermal limits of migration for adult Chinook salmon are from more northern populations, and it is possible Central Valley populations are better adapted to warmer water temperatures and may have different thermal limits during migration.



2. Project Status


Telemetry Study Template for this study can be found here

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

library(knitr)
library(kableExtra)
library(lubridate)
library(data.table)
library(ggplot2)
library(RMark)
library(scales)
library(viridis)
library(forcats)
library(reshape2)
library(png)
library(dataRetrieval)
library(rerddap)
library(plotly)

##################################################################################################################
#### ASSIGN STUDY ID IN THIS NEXT LINE OF CODE ####
study <- "Thermal_Thresholds_2024"
##################################################################################################################

detects_study <- fread("study_detections.csv", stringsAsFactors = F, colClasses = c(DateTime_PST = "character", RelDT = "character"))
detects_study <- as.data.frame(detects_study[detects_study$Study_ID == study,])
detects_study$DateTime_PST <- as.POSIXct(detects_study$DateTime_PST, format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT+8")
detects_study$release_time <- as.POSIXct(detects_study$RelDT, format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT+8")

colnames(detects_study)[which(colnames(detects_study) == "Weight")] <- "weight"
colnames(detects_study)[which(colnames(detects_study) == "Length")] <- "length"
colnames(detects_study)[which(colnames(detects_study) == "Rel_rkm")] <- "release_rkm"
colnames(detects_study)[which(colnames(detects_study) == "Rel_loc")] <- "release_location"
colnames(detects_study)[which(colnames(detects_study) == "rkm")] <- "river_km"

latest <- read.csv("latest_download.csv", stringsAsFactors = F)$x

##################################################################################################################
#### TO RUN THE FOLLOWING CODE CHUNKS FROM HERE ON DOWN USING R ERDDAP, UN-COMMENT THESE NEXT 9 LINES OF CODE ####
##################################################################################################################
# cache_delete_all()
# query=paste('&',"Study_ID",'="',study,'"',sep = '')
# datafile=URLencode(paste("https://oceanview.pfeg.noaa.gov/erddap/tabledap/","FEDcalFishTrack",".csv?",query,sep = ''))
# options(url.method = "libcurl", download.file.method = "libcurl", timeout = 180)
# detects_study <- data.frame(read.csv(datafile,row.names = NULL, stringsAsFactors = F))
# detects_study <- detects_study[-1,]
# detects_study$DateTime_PST <- as.POSIXct(detects_study$local_time, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
# detects_study$release_time <- as.POSIXct(detects_study$release_time, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
# detects_study$river_km <- as.numeric(detects_study$river_km)
##################################################################################################################


if (nrow(detects_study) == 0){
  cat("Study has not yet begun\n  ")
}else{
  
  if (min(detects_study$release_time) > Sys.time()){
    cat("Study has not yet begun, below data is a placeholder:\n  ")
  }
  if (min(detects_study$release_time) < Sys.time()){
    cat(paste("Study began on ", min(detects_study$release_time), ", see tagging details below:\n ", sep = ""))
  }
  
  ########################################################################
  #### ASSIGN RELEASE GROUPS HERE ####
  #######################################################################
  detects_study$Release <- "ALL"

  
  #detects_study[detects_study$release_time > as.POSIXct("2021-01-30 14:31:00"), "Release"] <- "Release 3"
  #######################################################################
   study_tagcodes <- as.data.frame(unique(detects_study[,c("TagCode", "release_time", "weight", "length", "release_rkm",
                                                        "release_location", "Release","Rel_latitude","Rel_longitude")]))

   release_stats <- study_tagcodes %>%
      group_by(Release) %>%
      summarise(First_release_time = min(release_time),
                Last_release_time = max(release_time),
                Number_fish_released = length(unique(TagCode)),
                Release_location = head(release_location, 1),
                Release_rkm = head(release_rkm,1),
                Mean_length = mean(length, na.rm=T),
                Mean_weight = mean(weight, na.rm=T),
                Release_lat = head(Rel_latitude,1),
                Release_lon = head(Rel_longitude,1)) %>%
      mutate(Mean_length = round(Mean_length, 1),
             Mean_weight = round(Mean_weight, 1),
             First_release_time = format(First_release_time, tz = "Etc/GMT+8"),
             Last_release_time = format(Last_release_time, tz = "Etc/GMT+8")) %>%
      arrange(First_release_time)

kable(release_stats[,!names(release_stats)%in% c("Release_lon","Release_lat")], format = "html", row.names = F) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left")

}                       
Study began on 2024-08-15 05:43:26, see tagging details below:
Release First_release_time Last_release_time Number_fish_released Release_location Release_rkm Mean_length Mean_weight
ALL 2024-08-15 05:43:26 2024-08-16 07:24:57 56 Gulf of Farallones 0 700.2 5094.8



3. Real-time Fish Detections


Study is complete, all tags are no longer active as of 2025-01-29. All times in Pacific Standard Time.

library(leaflet)
library(maps)
library(htmlwidgets)
library(leaflet.extras)
library(dplyr)
library(dbplyr)
library(DBI)
library(odbc)
library(data.table)

# Create connection with cloud database
con <- dbConnect(odbc(),
                Driver = "SQL Server",
                Server = "calfishtrack-server.database.windows.net",
                Database = "realtime_detections",
                UID = "realtime_user",
                PWD = "Pass@123",
                Port = 1433)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

## THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
   cat("No detections yet")

   # Use dbplyr to load realtime_locs and qryHexCodes sql table
   gen_locs <- tbl(con, "realtime_locs") %>% collect()
   # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F) %>% filter(is.na(stop))

   leaflet(data = gen_locs[is.na(gen_locs$stop),]) %>%
       # setView(-72.14600, 43.82977, zoom = 8) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>% 
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addMarkers(~longitude, ~latitude, label = ~general_location, group = "Receiver Sites", popup = ~location) %>% 
       # addAwesomeMarkers(~lon_dd, ~lat_dd, label = ~locality, group = "Sites", icon=icons) %>%
       addScaleBar(position = "bottomleft") %>%
          addLayersControl(
          baseGroups = c("Street Map", "Satellite", "Relief"),
          overlayGroups = c("Receiver Sites"),
          options = layersControlOptions(collapsed = FALSE)) %>%
          addSearchFeatures(targetGroups = c("Receiver Sites"))
} else {

   # Use dbplyr to load realtime_locs and qryHexCodes sql table
   gen_locs <- tbl(con, "realtime_locs") %>% collect()
   # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)

   endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                  max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))

   beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
      mutate(day = as.Date(day)) %>%
      # Subset to only look at data for the correct beacon for that day
      filter(TagCode == beacon)  %>% 
      # Only keep beacon by day for days since fish were released
      filter(day >= as.Date(min(study_tagcodes$release_time)) & day <= endtime) %>%
      dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")

   arrivals_per_day <- detects_study %>%
      group_by(general_location, TagCode) %>%
      summarise(DateTime_PST = min(DateTime_PST, na.rm = T)) %>%
      arrange(TagCode, general_location) %>%
      mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8")) %>%
      group_by(day, general_location) %>%
      summarise(New_arrivals = length(TagCode)) %>%
      na.omit() %>%
      mutate(day = as.Date(day)) %>%
      dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]), ., 
                       by = c("general_location", "day")) %>%
      arrange(general_location, day) %>%
      mutate(day = as.factor(day)) %>%
      filter(general_location != "Bench_test") %>% # Remove bench test
      filter(!(is.na(general_location))) # Remove NA locations

   ## Remove sites that were not operation the whole time
   #### FOR THE SEASONAL SURVIVAL PAGE, KEEP ALL SITES SINCE PEOPLE WANT TO SEE DETECTIONS OF LATER FISH AT NEWLY 
   #### DEPLOYED SPOTS
   gen_locs_days_in_oper <- arrivals_per_day %>%
      group_by(general_location) %>%
      summarise(days_in_oper = length(day))
   #gen_locs_days_in_oper <- gen_locs_days_in_oper[gen_locs_days_in_oper$days_in_oper ==
   #                                               max(gen_locs_days_in_oper$days_in_oper),]
   arrivals_per_day_in_oper <- arrivals_per_day %>%
      filter(general_location %in% gen_locs_days_in_oper$general_location)

   fish_per_site <- arrivals_per_day_in_oper %>%
      group_by(general_location) %>%
      summarise(fish_count = sum(New_arrivals, na.rm=T))

   gen_locs_mean_coords <- gen_locs %>%
      filter(is.na(stop) & general_location %in% fish_per_site$general_location) %>%
      group_by(general_location) %>%
      summarise(latitude = mean(latitude), # estimate mean lat and lons for each genloc
                longitude = mean(longitude),
                rkm = mean(rkm))

   fish_per_site <- merge(fish_per_site, gen_locs_mean_coords)
   fish_per_site <- fish_per_site[order(fish_per_site$rkm),]

   if(!is.na(release_stats$Release_lat[1])){
     leaflet(data = fish_per_site) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Street Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addPulseMarkers(data = fish_per_site[seq(from = 1, to = nrow(fish_per_site), by = 2),], lng = ~longitude, lat = ~latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, direction = "left", textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addPulseMarkers(data = fish_per_site[seq(from = 2, to = nrow(fish_per_site), by = 2),], lng = ~longitude, lat = ~latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, direction = "right", textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addCircleMarkers(data = release_stats, ~Release_lon, ~Release_lat, label = ~Number_fish_released, stroke = F, color = "blue", fillOpacity = 1, 
                        group = "Release Sites", popup = ~Release_location, labelOptions = labelOptions(noHide = T, textsize = "15px")) %>%
       addScaleBar(position = "bottomleft") %>%
       addLegend("bottomright", labels = c("Receivers", "Release locations"), colors = c("red","blue")) %>%
       addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"), options = layersControlOptions(collapsed = FALSE))
   } else {
     leaflet(data = fish_per_site) %>%
       addProviderTiles("Esri.NatGeoWorldMap", group = "Street Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addPulseMarkers(lng = fish_per_site$longitude, lat = fish_per_site$latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addScaleBar(position = "bottomleft") %>%
       addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"),
                        options = layersControlOptions(collapsed = FALSE))
   }
}

2.1 Map of unique fish detections at operational realtime detection locations


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) > 0){

   detects_study <- detects_study[order(detects_study$TagCode, detects_study$DateTime_PST),]
   ## Now estimate the time in hours between the previous and next detection, for each detection. 
   detects_study$prev_genloc <- shift(detects_study$general_location, fill = NA, type = "lag")
   #detects_study$prev_genloc <- shift(detects_study$General_Location, fill = NA, type = "lag")
   ## Now make NA the time diff values when it's between 2 different tagcodes or genlocs
   detects_study[which(detects_study$TagCode != shift(detects_study$TagCode, fill = NA, type = "lag")), "prev_genloc"] <- NA
   detects_study[which(detects_study$general_location != detects_study$prev_genloc), "prev_genloc"] <- NA
   detects_study$mov_score <- 0
   detects_study[is.na(detects_study$prev_genloc), "mov_score"] <- 1
   detects_study$mov_counter <- cumsum(detects_study$mov_score)

   detects_summary <- aggregate(list(first_detect = detects_study$DateTime_PST), by = list(TagCode = detects_study$TagCode, length = detects_study$length, release_time = detects_study$release_time, mov_counter = detects_study$mov_counter ,general_location = detects_study$general_location, river_km = detects_study$river_km, release_rkm = detects_study$release_rkm), min)

   detects_summary <- detects_summary[is.na(detects_summary$first_detect) == F,]
   releases <- aggregate(list(first_detect = detects_summary$release_time), by = list(TagCode = detects_summary$TagCode, length = detects_summary$length, release_time = detects_summary$release_time, release_rkm = detects_summary$release_rkm), min)
   releases$river_km <- releases$release_rkm
   releases$mov_counter <- NA
   releases$general_location <- NA

   detects_summary <- rbindlist(list(detects_summary, releases), use.names = T)
   detects_summary <- detects_summary[order(detects_summary$TagCode, detects_summary$first_detect),]

   starttime <- as.Date(min(detects_study$release_time), "Etc/GMT+8")
   ## Endtime should be either now, or end of predicted tag life, whichever comes first
   endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d"))+1, max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))
   #par(mar=c(6, 5, 2, 5) + 0.1)

   #plot_ly(detects_summary, width = 900, height = 600, dynamicTicks = TRUE) %>%
   plot_ly(detects_summary, x = ~first_detect, y = ~river_km, color = ~TagCode, width = 900, height = 600, dynamicTicks = TRUE, connectgaps = TRUE, mode = "lines+markers", type = "scatter") %>%
      layout(showlegend = T, title = paste("Total # of individual fish detected =",length(unique(detects_summary$TagCode))),
         xaxis = list(title = "<b> Date <b>", mirror=T,ticks="outside",showline=T, range=c(starttime,endtime)),
         yaxis = list(title = "<b> Kilometers upstream of the Golden Gate <b>", mirror=T,ticks="outside",showline=T, range=c(max(detects_study$Rel_rkm)+10, min(gen_locs[is.na(gen_locs$stop),"rkm"])-10)),
         legend = list(title=list(text='<b> Tag Code </b>')),
         margin=list(l = 50,r = 100,b = 50,t = 50)
   )

}else{
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Kilometers upstream of the Golden Gate")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}

2.2 Waterfall Detection Plot


_______________________________________________________________________________________________________

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]

if (nrow(detects_benicia)>0) {
  detects_benicia <- merge(detects_benicia,aggregate(list(first_detect = detects_benicia$DateTime_PST), by = list(TagCode= detects_benicia$TagCode), FUN = min))
  
  detects_benicia$Day <- as.Date(detects_benicia$first_detect, "Etc/GMT+8")
  
  starttime <- as.Date(min(detects_benicia$release_time), "Etc/GMT+8")
  ## Endtime should be either now or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))
  #wlk_flow <- cdec_query("COL", "20", "H", starttime, endtime+1)
  #wlk_flow$datetime <- as.Date(wlk_flow$datetime)
  #wlk_flow_day <- aggregate(list(parameter_value = wlk_flow$parameter_value), by = list(Day = wlk_flow$datetime), FUN = mean, na.rm = T)
  
  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))
  
  rels <- unique(study_tagcodes$Release)
  rel_num <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_benicia$Release))])
  
  tagcount <- aggregate(list(unique_tags = detects_benicia$TagCode), by = list(Day = detects_benicia$Day, Release = detects_benicia$Release ), FUN = function(x){length(unique(x))})
  tagcount1 <- reshape2::dcast(tagcount, Day ~ Release)
                    
  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0
  
  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == 'x'] <- paste(i)
    }
  }
  
  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
    
  #daterange2 <- merge(daterange1, wlk_flow_day, by = "Day", all.x = T)
  daterange2 <- daterange1
  
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL
  
  par(mar=c(6, 5, 2, 5) + 0.1)
  # barp <- barplot(t(daterange2[,1:ncol(daterange2)]), plot = FALSE, beside = T)
  # barplot(t(daterange2[,1:ncol(daterange2)]), beside = T, col=brewer.pal(n = rel_num, name = "Dark2"), 
  #         xlab = "", ylab = "Number of fish arrivals per day", 
  #         ylim = c(0,max(daterange2[,1:ncol(daterange2)], na.rm = T)*1.2), 
  #         las = 2, xlim=c(0,max(barp)+1), cex.lab = 1.5, yaxt = "n", xaxt = "n", border = NA)#, 
  #         #legend.text = colnames(daterange2[,1:ncol(daterange2)-1]),
  #         #args.legend = list(x ='topright', bty='n', inset=c(-0.2,0)), title = "Release Group")
  # legend(x ='topleft', legend = colnames(daterange2)[1:ncol(daterange2)], fill= brewer.pal(n = rel_num, name = "Set1"), horiz = T, title = "Release")
  # ybreaks <- if(max(daterange2[,1:ncol(daterange2)], na.rm = T) < 4) {max(daterange2[,1:ncol(daterange2)], na.rm = T)} else {5}
  # xbreaks <- if(ncol(barp) > 10) {seq(1, ncol(barp), 2)} else {1:ncol(barp)}
  # barpmeans <- colMeans(barp)
  # axis(1, at = barpmeans[xbreaks], labels = rownames(daterange2)[xbreaks], las = 2)
  # axis(2, at = pretty(0:max(daterange2[,1:ncol(daterange2)], na.rm = T), ybreaks))
  # box()
  daterange2$Date <- as.Date(row.names(daterange2))
  daterange3 <- melt(daterange2, id.vars = "Date", variable.name = ".", )
  
  # p <- ggplot(data = daterange3, aes(x = Date, y = value, color = ., fill = .)) +
  #   geom_bar(stat='identity') +
  #   ylab("Number of fish arrivals per day") +
  #   #xlim(range(daterange$Day)) +
  #   #geom_line(data= daterange2_flow, aes(x = Date, y = parameter_value/500), color = alpha("#947FFF", alpha = 0.5))+
  #   #scale_x_date(date_breaks = "5 days") +
  #   #scale_y_continuous(name = "Number of fish arrivals per day",
  #     # Add a second axis and specify its features
  #   #  sec.axis = sec_axis(~.*500, name="Second Axis")) +
  #   theme_bw() +
  #   theme(panel.border = element_rect(colour = "black", fill=NA))

  
  daterange3$. <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))
  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
    add_bars(x = ~Date, y = ~value, color = ~.) %>%
    add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                     x=0.01, xanchor="left",
                     y=1.056, yanchor="top",    # Same y as legend below
                     legendtitle=TRUE, showarrow=FALSE ) %>%
    #add_lines(x=~daterange2_flow$Date, y=~daterange2_flow$parameter_value, line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, inherit=FALSE) %>%
    layout(showlegend = T, 
           barmode = "stack",
           xaxis = list(title = "Date", mirror=T,ticks='outside',showline=T), yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks='outside',showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50)
           )



}else{
  plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}

2.3 Detections at Benicia Bridge for duration of tag life


_______________________________________________________________________________________________________

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_tower <- detects_study[detects_study$general_location == "TowerBridge",]

#wlk_flow <- read.csv("wlk.csv")

if (nrow(detects_tower) == 0){
  plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  
  detects_tower <- merge(detects_tower,aggregate(list(first_detect = detects_tower$DateTime_PST), by = list(TagCode= detects_tower$TagCode), FUN = min))
  
  detects_tower$Day <- as.Date(detects_tower$first_detect, "Etc/GMT+8")
  
  starttime <- as.Date(min(detects_tower$release_time), "Etc/GMT+8")
  ## Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  ## download wilkins slough flow data

  wlk_flow <- readNWISuv(siteNumbers = "11390500", parameterCd="00060", startDate = starttime, endDate = endtime+1)
  
  wlk_flow$datetime <- as.Date(format(wlk_flow$dateTime, "%Y-%m-%d"))
  wlk_flow_day <- aggregate(list(parameter_value = wlk_flow$X_00060_00000),
                            by = list(Day = wlk_flow$datetime),
                            FUN = mean, na.rm = T)


  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  #rels <- unique(study_tagcodes[study_tagcodes$StudyID == unique(detects_tower$StudyID), "Release"])
  rels <- unique(study_tagcodes$Release)
  rel_num <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_tower$Release))])

  tagcount <- aggregate(list(unique_tags = detects_tower$TagCode), by = list(Day = detects_tower$Day, Release = detects_tower$Release ), FUN = function(x){length(unique(x))})
  tagcount1 <- reshape2::dcast(tagcount, Day ~ Release)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == 'x'] <- paste(i)
    }
  }
  
  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
  
  daterange2 <- merge(daterange1, wlk_flow_day, by = "Day", all.x = T)

  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL

  par(mar=c(6, 5, 2, 5) + 0.1)
  # barp <- barplot(t(daterange2[,1:ncol(daterange2)-1]), plot = FALSE, beside = T)
  # barplot(t(daterange2[,1:ncol(daterange2)-1]), beside = T, col=brewer.pal(n = rel_num, name = "Set1"),
  #         xlab = "", ylab = "Number of fish arrivals per day",
  #         ylim = c(0,max(daterange2[,1:ncol(daterange2)-1], na.rm = T)*1.2),
  #         las = 2, xlim=c(0,max(barp)+1), cex.lab = 1.5, yaxt = "n", xaxt ="n", border = NA)#,
  # #border=NA
  # #legend.text = colnames(daterange2[,1:ncol(daterange2)-1]),
  # #args.legend = list(x ='topright', bty='n', inset=c(-0.2,0)), title = "Release Group")
  # legend(x ='topleft', legend = colnames(daterange2)[1:ncol(daterange2)-1], fill= brewer.pal(n = rel_num, name = "Set1"), horiz = T, title = "Release")
  # ybreaks <- if(max(daterange2[,1:ncol(daterange2)-1], na.rm = T) < 4) {max(daterange2[,1:ncol(daterange2)-1], na.rm = T)} else {5}
  # xbreaks <- if(ncol(barp) > 10) {seq(1, ncol(barp), 2)} else {1:ncol(barp)}
  # barpmeans <- colMeans(barp)
  # axis(1, at = barpmeans[xbreaks], labels = rownames(daterange2[xbreaks,]), las = 2)
  # axis(2, at = pretty(0:max(daterange2[,1:ncol(daterange2)-1], na.rm = T), ybreaks))
  # 
  # par(new=T)
  # 
  # plot(x = barpmeans, daterange2$parameter_value, yaxt = "n", xaxt = "n", ylab = "", xlab = "", col = "lightslateblue", type = "l", lwd=1.5, xlim=c(0,max(barp)+1), ylim = c(min(daterange2$parameter_value, na.rm = T), max(daterange2$parameter_value, na.rm=T)*1.1))#, ylab = "Returning adults", xlab= "Outmigration year", yaxt="n", col="red", pch=20)
  # axis(side = 4)#, labels = c(2000:2016), at = c(2000:2016))
  # mtext("Flow (cfs) at Wilkins Slough", side=4, line=3, cex=1.5, col="lightslateblue")
  daterange2$Date <- as.Date(row.names(daterange2))
  daterange2_flow <- daterange2[,c("Date", "parameter_value")]
  daterange3 <- melt(daterange2[,!(names(daterange2) %in% c("parameter_value"))], id.vars = "Date", variable.name = ".")
  
  ay <- list(
    overlaying = "y",
    nticks = 5,
    color = "#947FFF",
    side = "right",
    title = "Flow (cfs) at Wilkins Slough",
    automargin = TRUE
  )
  
  # p <- ggplot(data = daterange3, aes(x = Date, y = value, color = ., fill = .)) +
  #   geom_bar(stat='identity') +
  #   ylab("Number of fish arrivals per day") +
  #   #xlim(c(as.Date("2021-02-01"), as.Date("2021-02-05"))) +
  #   #geom_line(data= daterange2_flow, aes(x = Date, y = parameter_value/500), color = alpha("#947FFF", alpha = 0.5))+
  #   #scale_x_date(date_breaks = "5 days") +
  #   #scale_y_continuous(name = "Number of fish arrivals per day",
  #     # Add a second axis and specify its features
  #   #  sec.axis = sec_axis(~.*500, name="Second Axis")) +
  #   theme_bw() +
  #   theme(panel.border = element_rect(colour = "black", fill=NA))

  
  daterange3$. <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))
  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
    add_bars(x = ~Date, y = ~value, color = ~.) %>%
    add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                     x=0.01, xanchor="left",
                     y=1.056, yanchor="top",    # Same y as legend below
                     legendtitle=TRUE, showarrow=FALSE ) %>%
    add_lines(x=~daterange2_flow$Date, y=~daterange2_flow$parameter_value, line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, inherit=FALSE) %>%
    layout(yaxis2 = ay,showlegend = T, 
           barmode = "stack",
           xaxis = list(title = "Date", mirror=T,ticks='outside',showline=T), yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks='outside',showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50)
           )

}

2.4 Detections at Tower Bridge (downtown Sacramento) versus Sacramento River flows at Wilkins Slough for duration of tag life


_______________________________________________________________________________________________________

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_butte <- detects_study[detects_study$general_location == "MeridianBr",]

if (nrow(detects_butte) == 0){
  plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  
  detects_butte <- merge(detects_butte,aggregate(list(first_detect = detects_butte$DateTime_PST), by = list(TagCode= detects_butte$TagCode), FUN = min))
  
  detects_butte$Day <- as.Date(detects_butte$first_detect, "Etc/GMT+8")
  
  starttime <- as.Date(min(detects_butte$release_time), "Etc/GMT+8")
  ## Endtime should be either now, or end of predicted tag life, whichever comes first
  #endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_butte$release_time)+60), max(as.Date(detects_butte$release_time)+(as.numeric(detects_butte$tag_life)*1.5)))
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  
  #BTC_flow <- cdec_query("BTC", "20", "H", starttime, endtime+1)
  ## download bend bridge flow data

  BTC_flow <- readNWISuv(siteNumbers = "11377100", parameterCd="00060", startDate = starttime, endDate = endtime+1)
  
  BTC_flow$datetime <- as.Date(format(BTC_flow$dateTime, "%Y-%m-%d"))
  BTC_flow_day <- aggregate(list(parameter_value = BTC_flow$X_00060_00000),
                            by = list(Day = BTC_flow$datetime),
                            FUN = mean, na.rm = T)
  
  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))
  
  #rels <- unique(study_tagcodes[study_tagcodes$StudyID == unique(detects_butte$StudyID), "Release"])
  rels <- unique(study_tagcodes$Release)
  rel_num <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_butte$Release))])
  
  tagcount <- aggregate(list(unique_tags = detects_butte$TagCode), by = list(Day = detects_butte$Day, Release = detects_butte$Release), FUN = function(x){length(unique(x))})
  tagcount1 <- reshape2::dcast(tagcount, Day ~ Release)
  
  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0
  
  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == 'x'] <- paste(i)
    }
  }
  
  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
    
  daterange2 <- merge(daterange1, BTC_flow_day, by = "Day", all.x = T)
  
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL
  
  par(mar=c(6, 5, 2, 5) + 0.1)
  # barp <- barplot(t(daterange2[,1:ncol(daterange2)-1]), plot = FALSE, beside = T)
  # barplot(t(daterange2[,1:ncol(daterange2)-1]), beside = T, col=brewer.pal(n = rel_num, name = "Set1"),
  #         xlab = "", ylab = "Number of fish arrivals per day",
  #         ylim = c(0,max(daterange2[,1:ncol(daterange2)-1], na.rm = T)*1.2),
  #         las = 2, xlim=c(0,max(barp)+1), cex.lab = 1.5, yaxt = "n", xaxt ="n", border = NA)#,
  # #border=NA
  # #legend.text = colnames(daterange2[,1:ncol(daterange2)-1]),
  # #args.legend = list(x ='topright', bty='n', inset=c(-0.2,0)), title = "Release Group")
  # legend(x ='topleft', legend = colnames(daterange2)[1:ncol(daterange2)-1], fill= brewer.pal(n = rel_num, name = "Set1"), horiz = T, title = "Release")
  # ybreaks <- if(max(daterange2[,1:ncol(daterange2)-1], na.rm = T) < 4) {max(daterange2[,1:ncol(daterange2)-1], na.rm = T)} else {5}
  # xbreaks <- if(ncol(barp) > 10) {seq(1, ncol(barp), 2)} else {1:ncol(barp)}
  # barpmeans <- colMeans(barp)
  # axis(1, at = barpmeans[xbreaks], labels = rownames(daterange2[xbreaks,]), las = 2)
  # axis(2, at = pretty(0:max(daterange2[,1:ncol(daterange2)-1], na.rm = T), ybreaks))
  # 
  # par(new=T)
  # 
  # plot(x = barpmeans, daterange2$parameter_value, yaxt = "n", xaxt = "n", ylab = "", xlab = "", col = "lightslateblue", type = "l", lwd=1.5, xlim=c(0,max(barp)+1), ylim = c(min(daterange2$parameter_value, na.rm = T), max(daterange2$parameter_value, na.rm=T)*1.1))#, ylab = "Returning adults", xlab= "Outmigration year", yaxt="n", col="red", pch=20)
  # axis(side = 4)#, labels = c(2000:2016), at = c(2000:2016))
  # mtext("Flow (cfs) at Bend Bridge", side=4, line=3, cex=1.5, col="lightslateblue")
  daterange2$Date <- as.Date(row.names(daterange2))
  daterange2_flow <- daterange2[,c("Date", "parameter_value")]
  daterange3 <- melt(daterange2[,!(names(daterange2) %in% c("parameter_value"))], id.vars = "Date", variable.name = ".")
  
  ay <- list(
    overlaying = "y",
    nticks = 5,
    color = "#947FFF",
    side = "right",
    title = "Flow (cfs) at Bend Bridge",
    automargin = TRUE
  )
  
  # p <- ggplot(data = daterange3, aes(x = Date, y = value, color = ., fill = .)) +
  #   geom_bar(stat='identity') +
  #   ylab("Number of fish arrivals per day") +
  #   #xlim(c(as.Date("2021-02-01"), as.Date("2021-02-05"))) +
  #   #geom_line(data= daterange2_flow, aes(x = Date, y = parameter_value/500), color = alpha("#947FFF", alpha = 0.5))+
  #   #scale_x_date(date_breaks = "5 days") +
  #   #scale_y_continuous(name = "Number of fish arrivals per day",
  #     # Add a second axis and specify its features
  #   #  sec.axis = sec_axis(~.*500, name="Second Axis")) +
  #   theme_bw() +
  #   theme(panel.border = element_rect(colour = "black", fill=NA))

  
  daterange3$. <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))
  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
    add_bars(x = ~Date, y = ~value, color = ~.) %>%
    add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                     x=0.01, xanchor="left",
                     y=1.056, yanchor="top",    # Same y as legend below
                     legendtitle=TRUE, showarrow=FALSE ) %>%
    add_lines(x=~daterange2_flow$Date, y=~daterange2_flow$parameter_value, line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, inherit=FALSE) %>%
    layout(yaxis2 = ay,showlegend = T, 
           barmode = "stack",
           xaxis = list(title = "Date", mirror=T,ticks='outside',showline=T), yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks='outside',showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50)
           )

}

2.5 Detections at Meridian Bridge versus Sacramento River flows at Bend Bridge for duration of tag life


_______________________________________________________________________________________________________

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_saltcrk <- detects_study[detects_study$general_location == "Blw_Salt_RT",]

if (nrow(detects_saltcrk) == 0){
  plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  
  detects_saltcrk <- merge(detects_saltcrk,aggregate(list(first_detect = detects_saltcrk$DateTime_PST), by = list(TagCode= detects_saltcrk$TagCode), FUN = min))
  
  detects_saltcrk$Day <- as.Date(detects_saltcrk$first_detect, "Etc/GMT+8")
  
  starttime <- as.Date(min(detects_saltcrk$release_time), "Etc/GMT+8")
  ## Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  
  #BTC_flow <- cdec_query("BTC", "20", "H", starttime, endtime+1)
  ## download bend bridge flow data

  BTC_flow <- readNWISuv(siteNumbers = "11377100", parameterCd="00060", startDate = starttime, endDate = endtime+1)
  
  BTC_flow$datetime <- as.Date(format(BTC_flow$dateTime, "%Y-%m-%d"))
  BTC_flow_day <- aggregate(list(parameter_value = BTC_flow$X_00060_00000),
                            by = list(Day = BTC_flow$datetime),
                            FUN = mean, na.rm = T)
  
  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))
  
  #rels <- unique(study_tagcodes[study_tagcodes$StudyID == unique(detects_butte$StudyID), "Release"])
  rels <- unique(study_tagcodes$Release)
  rel_num <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_saltcrk$Release))])
  
  tagcount <- aggregate(list(unique_tags = detects_saltcrk$TagCode), by = list(Day = detects_saltcrk$Day, Release = detects_saltcrk$Release), FUN = function(x){length(unique(x))})
  tagcount1 <- reshape2::dcast(tagcount, Day ~ Release)
  
  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0
  
  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == 'x'] <- paste(i)
    }
  }
  
  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
    
  daterange2 <- merge(daterange1, BTC_flow_day, by = "Day", all.x = T)
  
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL
  
  par(mar=c(6, 5, 2, 5) + 0.1)
  # barp <- barplot(t(daterange2[,1:ncol(daterange2)-1]), plot = FALSE, beside = T)
  # barplot(t(daterange2[,1:ncol(daterange2)-1]), beside = T, col=brewer.pal(n = rel_num, name = "Set1"),
  #         xlab = "", ylab = "Number of fish arrivals per day",
  #         ylim = c(0,max(daterange2[,1:ncol(daterange2)-1], na.rm = T)*1.2),
  #         las = 2, xlim=c(0,max(barp)+1), cex.lab = 1.5, yaxt = "n", xaxt ="n", border = NA)#,
  # #border=NA
  # #legend.text = colnames(daterange2[,1:ncol(daterange2)-1]),
  # #args.legend = list(x ='topright', bty='n', inset=c(-0.2,0)), title = "Release Group")
  # legend(x ='topleft', legend = colnames(daterange2)[1:ncol(daterange2)-1], fill= brewer.pal(n = rel_num, name = "Set1"), horiz = T, title = "Release")
  # ybreaks <- if(max(daterange2[,1:ncol(daterange2)-1], na.rm = T) < 4) {max(daterange2[,1:ncol(daterange2)-1], na.rm = T)} else {5}
  # xbreaks <- if(ncol(barp) > 10) {seq(1, ncol(barp), 2)} else {1:ncol(barp)}
  # barpmeans <- colMeans(barp)
  # axis(1, at = barpmeans[xbreaks], labels = rownames(daterange2[xbreaks,]), las = 2)
  # axis(2, at = pretty(0:max(daterange2[,1:ncol(daterange2)-1], na.rm = T), ybreaks))
  # 
  # par(new=T)
  # 
  # plot(x = barpmeans, daterange2$parameter_value, yaxt = "n", xaxt = "n", ylab = "", xlab = "", col = "lightslateblue", type = "l", lwd=1.5, xlim=c(0,max(barp)+1), ylim = c(min(daterange2$parameter_value, na.rm = T), max(daterange2$parameter_value, na.rm=T)*1.1))#, ylab = "Returning adults", xlab= "Outmigration year", yaxt="n", col="red", pch=20)
  # axis(side = 4)#, labels = c(2000:2016), at = c(2000:2016))
  # mtext("Flow (cfs) at Bend Bridge", side=4, line=3, cex=1.5, col="lightslateblue")
  daterange2$Date <- as.Date(row.names(daterange2))
  daterange2_flow <- daterange2[,c("Date", "parameter_value")]
  daterange3 <- melt(daterange2[,!(names(daterange2) %in% c("parameter_value"))], id.vars = "Date", variable.name = ".")
  
  ay <- list(
    overlaying = "y",
    nticks = 5,
    color = "#947FFF",
    side = "right",
    title = "Flow (cfs) at Bend Bridge",
    automargin = TRUE
  )
  
  # p <- ggplot(data = daterange3, aes(x = Date, y = value, color = ., fill = .)) +
  #   geom_bar(stat='identity') +
  #   ylab("Number of fish arrivals per day") +
  #   #xlim(c(as.Date("2021-02-01"), as.Date("2021-02-05"))) +
  #   #geom_line(data= daterange2_flow, aes(x = Date, y = parameter_value/500), color = alpha("#947FFF", alpha = 0.5))+
  #   #scale_x_date(date_breaks = "5 days") +
  #   #scale_y_continuous(name = "Number of fish arrivals per day",
  #     # Add a second axis and specify its features
  #   #  sec.axis = sec_axis(~.*500, name="Second Axis")) +
  #   theme_bw() +
  #   theme(panel.border = element_rect(colour = "black", fill=NA))

  
  daterange3$. <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))
  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
    add_bars(x = ~Date, y = ~value, color = ~.) %>%
    add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                     x=0.01, xanchor="left",
                     y=1.056, yanchor="top",    # Same y as legend below
                     legendtitle=TRUE, showarrow=FALSE ) %>%
    add_lines(x=~daterange2_flow$Date, y=~daterange2_flow$parameter_value, line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, inherit=FALSE) %>%
    layout(yaxis2 = ay,showlegend = T, 
           barmode = "stack",
           xaxis = list(title = "Date", mirror=T,ticks='outside',showline=T), yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks='outside',showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50)
           )

}



5. Detections statistics at all realtime receivers


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"
} else {

  arrivals <- aggregate(list(DateTime_PST = detects_study$DateTime_PST), by = list(general_location = detects_study$general_location, TagCode = detects_study$TagCode), FUN = min)
  
  tag_stats <- aggregate(list(First_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = min)
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Mean_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = mean), 
                     by = c("general_location"))
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Last_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = max), 
                     by = c("general_location"))
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Fish_count = arrivals$TagCode), 
                         by= list(general_location = arrivals$general_location), 
                         FUN = function(x) {length(unique(x))}), 
                     by = c("general_location"))
  tag_stats$Percent_arrived <- round(tag_stats$Fish_count/nrow(study_tagcodes) * 100,2)
      
  tag_stats <- merge(tag_stats, unique(detects_study[,c("general_location", "river_km")]))
  
  tag_stats <- tag_stats[order(tag_stats$river_km, decreasing = T),]
  
  tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")
  
  tag_stats <- tag_stats[is.na(tag_stats$First_arrival)==F,]

  print(kable(tag_stats, row.names = F, 
              caption = "4.1 Detections for all releases combined",
              "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
  
  for (j in sort(unique(study_tagcodes$Release))) {
    
    if(nrow(detects_study[detects_study$Release == j,]) > 0 ) {
    
      temp <- detects_study[detects_study$Release == j,]
      
        arrivals1 <- aggregate(list(DateTime_PST = temp$DateTime_PST), by = list(general_location = temp$general_location, TagCode = temp$TagCode), FUN = min)
  
      rel_count <- nrow(study_tagcodes[study_tagcodes$Release == j,])
  
      tag_stats1 <- aggregate(list(First_arrival = arrivals1$DateTime_PST), 
                             by= list(general_location = arrivals1$general_location), 
                             FUN = min)
      tag_stats1 <- merge(tag_stats1, 
                         aggregate(list(Mean_arrival = arrivals1$DateTime_PST), 
                             by= list(general_location = arrivals1$general_location), 
                             FUN = mean), 
                         by = c("general_location"))
      tag_stats1 <- merge(tag_stats1, 
                   aggregate(list(Last_arrival = arrivals1$DateTime_PST), 
                       by= list(general_location = arrivals1$general_location), 
                       FUN = max), 
                   by = c("general_location"))
      tag_stats1 <- merge(tag_stats1, 
                         aggregate(list(Fish_count = arrivals1$TagCode), 
                                   by= list(general_location = arrivals1$general_location), 
                                   FUN = function(x) {length(unique(x))}), 
                         by = c("general_location"))
      
      tag_stats1$Percent_arrived <- round(tag_stats1$Fish_count/rel_count * 100,2)
    
      tag_stats1 <- merge(tag_stats1, unique(detects_study[,c("general_location", "river_km")]))
    
      tag_stats1 <- tag_stats1[order(tag_stats1$river_km, decreasing = T),]
      
      tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")
      
      tag_stats1 <- tag_stats1[is.na(tag_stats1$First_arrival)==F,]
      
      final_stats <- kable(tag_stats1, row.names = F, 
            caption = paste("4.2 Detections for",j,"release groups", sep = " "),
            "html")
      
      print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
      
    } else {
      cat("\n\n\\pagebreak\n")
      print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
      cat("\n\n\\pagebreak\n")
    }
  }
}
4.1 Detections for all releases combined
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Blw_Salt_RT 2024-09-23 05:49:22 2024-09-29 06:47:44 2024-10-05 07:46:07 2 3.57 457.000
MeridianBr 2024-09-02 14:16:34 2024-09-07 12:26:21 2024-09-12 10:36:09 2 3.57 290.848
TowerBridge 2024-08-29 23:49:10 2024-09-14 12:32:52 2024-10-30 23:03:03 8 14.29 172.000
I80-50_Br 2024-08-29 23:00:28 2024-09-13 21:51:18 2024-10-25 11:33:59 8 14.29 170.748
Old_River_Quimby 2024-09-29 11:16:03 2024-09-29 11:16:03 2024-09-29 11:16:03 1 1.79 141.000
SacRiverWalnutGrove_2 2024-08-30 02:57:55 2024-09-14 14:02:03 2024-10-22 04:46:18 10 17.86 120.300
Georg_Sl_1 2024-08-30 03:12:27 2024-09-18 19:56:03 2024-10-21 16:28:40 5 8.93 119.600
Sac_BlwGeorgiana 2024-08-30 02:34:01 2024-09-12 22:34:53 2024-10-21 16:09:03 8 14.29 119.058
Sac_BlwGeorgiana2 2024-08-30 02:24:40 2024-09-13 04:53:55 2024-10-21 16:01:07 9 16.07 118.398
Benicia_east 2024-08-23 18:13:21 2024-09-06 05:25:19 2024-10-18 00:12:14 16 28.57 52.240
Benicia_west 2024-08-24 10:32:54 2024-09-10 04:31:05 2024-10-17 23:14:38 20 35.71 52.040
4.2 Detections for ALL release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Blw_Salt_RT 2024-09-23 05:49:22 2024-09-29 06:47:44 2024-10-05 07:46:07 2 3.57 457.000
MeridianBr 2024-09-02 14:16:34 2024-09-07 12:26:21 2024-09-12 10:36:09 2 3.57 290.848
TowerBridge 2024-08-29 23:49:10 2024-09-14 12:32:52 2024-10-30 23:03:03 8 14.29 172.000
I80-50_Br 2024-08-29 23:00:28 2024-09-13 21:51:18 2024-10-25 11:33:59 8 14.29 170.748
Old_River_Quimby 2024-09-29 11:16:03 2024-09-29 11:16:03 2024-09-29 11:16:03 1 1.79 141.000
SacRiverWalnutGrove_2 2024-08-30 02:57:55 2024-09-14 14:02:03 2024-10-22 04:46:18 10 17.86 120.300
Georg_Sl_1 2024-08-30 03:12:27 2024-09-18 19:56:03 2024-10-21 16:28:40 5 8.93 119.600
Sac_BlwGeorgiana 2024-08-30 02:34:01 2024-09-12 22:34:53 2024-10-21 16:09:03 8 14.29 119.058
Sac_BlwGeorgiana2 2024-08-30 02:24:40 2024-09-13 04:53:55 2024-10-21 16:01:07 9 16.07 118.398
Benicia_east 2024-08-23 18:13:21 2024-09-06 05:25:19 2024-10-18 00:12:14 16 28.57 52.240
Benicia_west 2024-08-24 10:32:54 2024-09-10 04:31:05 2024-10-17 23:14:38 20 35.71 52.040


4.3 Fish arrivals per day (“NA” means receivers were non-operational)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

## THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"
} else {
  arrivals <- aggregate(list(DateTime_PST = detects_study$DateTime_PST), by = list(general_location = detects_study$general_location, TagCode = detects_study$TagCode), FUN = min)
    
  beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F)
  beacon_by_day$day <- as.Date(beacon_by_day$day)
  
  gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)
  
  arrivals$day <- as.Date(format(arrivals$DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8"))
  
  arrivals_per_day <- aggregate(list(New_arrivals = arrivals$TagCode), by = list(day = arrivals$day, general_location = arrivals$general_location), length)
  arrivals_per_day$day <- as.Date(arrivals_per_day$day)

  ## Now subset to only look at data for the correct beacon for that day
  beacon_by_day <- as.data.frame(beacon_by_day[which(beacon_by_day$TagCode == beacon_by_day$beacon),])
  
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))
  ## Now only keep beacon by day for days since fish were released
  beacon_by_day <- beacon_by_day[beacon_by_day$day >= as.Date(min(study_tagcodes$release_time)) & beacon_by_day$day <= endtime,]  
  
  beacon_by_day <- merge(beacon_by_day, gen_locs[,c("location", "general_location","rkm")], by = "location", all.x = T)

  arrivals_per_day <- merge(unique(beacon_by_day[,c("general_location", "day", "rkm")]), arrivals_per_day, all.x = T, by = c("general_location", "day"))
  
  arrivals_per_day$day <- factor(arrivals_per_day$day)
  
  ## Remove bench test and other NA locations
  arrivals_per_day <- arrivals_per_day[!arrivals_per_day$general_location == "Bench_test",]
  arrivals_per_day <- arrivals_per_day[is.na(arrivals_per_day$general_location) == F,]
  
  ## Change order of data to plot decreasing river_km
  arrivals_per_day <- arrivals_per_day[order(arrivals_per_day$rkm, decreasing = T),]
  arrivals_per_day$general_location <- factor(arrivals_per_day$general_location, unique(arrivals_per_day$general_location))
  
  # 
  # ggplot(data=arrivals_per_day, aes(x=general_location, y=fct_rev(as_factor(day)))) +
  # geom_tile(fill = "lightgray", color = "black") + 
  # geom_text(aes(label=New_arrivals)) +
  # labs(x="General Location", y = "Date") +
  # theme(panel.background = element_blank(), axis.text.x = element_text(angle = 90, hjust = 1))
    crosstab <- xtabs(formula = arrivals_per_day$New_arrivals ~ arrivals_per_day$day + arrivals_per_day$general_location, addNA =T)
  crosstab[is.na(crosstab)] <- ""
  crosstab[crosstab==0] <- NA
  crosstab <- as.data.frame.matrix(crosstab)
  #colnames(crosstab) <- c("Butte Br", "Tower Br", "I8050 Br", "Old River", "Middle River", "CVP Tanks", "Georg Slough1", "Sac_Blw Georg1", "Georg Slough2", "Sac_Blw Georg2", "Benicia East", "Benicia West")

 kable(crosstab, align = "c") %>%
  kable_styling(c("striped", "condensed"), font_size = 11, full_width = F, position = "left") %>%
  #row_spec(0, angle = -45) %>%
  column_spec(column = 1:ncol(crosstab),width_min = "50px",border_left = T, border_right = T) %>%
  column_spec(1, bold = T, width_min = "75px")%>%
  scroll_box(height = "700px")
}
Blw_Salt_RT MeridianBr TowerBridge I80-50_Br MiddleRiver Clifton_Court_US_Radial_Gates Holland_Cut_Quimby CVP_Tank CVP_Trash_Rack_1 Clifton_Court_Intake_Canal Old_River_Quimby Benicia_east Benicia_west
2024-08-15
2024-08-16 NA
2024-08-17 NA
2024-08-18 NA
2024-08-19 NA
2024-08-20 NA
2024-08-21 NA
2024-08-22 NA
2024-08-23 NA 1
2024-08-24 NA 2 2
2024-08-25 NA
2024-08-26 NA 1
2024-08-27 NA 2 1
2024-08-28 NA 1 1
2024-08-29 NA 1 1
2024-08-30 NA
2024-08-31 NA 1 1 1 1
2024-09-01 NA
2024-09-02 NA 1 1 2 2
2024-09-03 NA 1 2
2024-09-04 NA
2024-09-05 NA 1 1
2024-09-06 NA 1 1
2024-09-07 NA
2024-09-08 NA 2 2
2024-09-09 NA 1 1
2024-09-10 NA 1
2024-09-11
2024-09-12 1
2024-09-13 1 1
2024-09-14 1
2024-09-15
2024-09-16 1 1
2024-09-17 1
2024-09-18
2024-09-19
2024-09-20 1
2024-09-21
2024-09-22
2024-09-23 1
2024-09-24
2024-09-25
2024-09-26
2024-09-27 1 1
2024-09-28
2024-09-29 1
2024-09-30
2024-10-01 1 1
2024-10-02
2024-10-03
2024-10-04 1
2024-10-05 1
2024-10-06
2024-10-07
2024-10-08
2024-10-09
2024-10-10
2024-10-11
2024-10-12
2024-10-13
2024-10-14
2024-10-15
2024-10-16
2024-10-17 1
2024-10-18 1
2024-10-19
2024-10-20
2024-10-21
2024-10-22
2024-10-23
2024-10-24
2024-10-25 1
2024-10-26
2024-10-27
2024-10-28
2024-10-29
2024-10-30 1
2024-10-31
2024-11-01
2024-11-02
2024-11-03
2024-11-04
2024-11-05
2024-11-06
2024-11-07
2024-11-08
2024-11-09
2024-11-10
2024-11-11
2024-11-12
2024-11-13
2024-11-14
2024-11-15
2024-11-16
2024-11-17
2024-11-18
2024-11-19
2024-11-20
2024-11-21
2024-11-22
2024-11-23
2024-11-24
2024-11-25
2024-11-26
2024-11-27
2024-11-28
2024-11-29
2024-11-30
2024-12-01
2024-12-02
2024-12-03
2024-12-04
2024-12-05
2024-12-06
2024-12-07
2024-12-08
2024-12-09
2024-12-10
2024-12-11
2024-12-12
2024-12-13
2024-12-14
2024-12-15
2024-12-16
2024-12-17
2024-12-18
2024-12-19
2024-12-20
2024-12-21
2024-12-22
2024-12-23
2024-12-24
2024-12-25
2024-12-26
2024-12-27
2024-12-28
2024-12-29
2024-12-30
2024-12-31
2025-01-01
2025-01-02
2025-01-03
2025-01-04
2025-01-05
2025-01-06
2025-01-07
2025-01-08
2025-01-09
2025-01-10
2025-01-11
2025-01-12
2025-01-13
2025-01-14
2025-01-15
2025-01-16
2025-01-17
2025-01-18
2025-01-19
2025-01-20
2025-01-21
2025-01-22
2025-01-23
2025-01-24
2025-01-25
2025-01-26
2025-01-27
2025-01-28
2025-01-29
rm(list = ls())
#cleanup(ask = F)



For questions or comments, please contact