Central Valley Enhanced

Acoustic Tagging Project

logo





Hatchery-origin San Joaquin spring-run Chinook salmon

2018-2019 Season (PROVISIONAL DATA)



1. Project Status


Study is complete, all tags are no longer active. All times in Pacific Standard Time.


Telemetry Study Template for this study can be found here

setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

tagcodes <- read.csv("qry_HexCodes.txt", stringsAsFactors = F, colClasses=c("TagID_Hex"="character"))

tagcodes$RelDT <- as.POSIXct(tagcodes$RelDT, format = "%m/%d/%Y %I:%M:%S %p", tz = "Etc/GMT+8")
latest <- read.csv("latest_download.csv", stringsAsFactors = F)

study_tagcodes <- tagcodes[tagcodes$StudyID == "SCARF_San_Joaquin_Spring_run_2019",]
 

if (nrow(study_tagcodes) == 0){
  cat("Project has not yet begun")
}else{
  cat(paste("Project began on ", min(study_tagcodes$RelDT), ", see tagging details below:", sep = ""))
  
  study_tagcodes$Release <- "FreemontFord"
  study_tagcodes[study_tagcodes$RelDT > as.POSIXct("2019-03-01"), "Release"] <- "DurhamFerry"

  
  release_stats <- aggregate(list(First_release_time = study_tagcodes$RelDT),
                             by= list(Release = study_tagcodes$Release),
                             FUN = min)
  release_stats <- merge(release_stats,
                         aggregate(list(Last_release_time = study_tagcodes$RelDT),
                             by= list(Release = study_tagcodes$Release),
                             FUN = max),
                         by = c("Release"))
  
                             
  release_stats <- merge(release_stats, aggregate(list(Number_fish_released =
                                                         study_tagcodes$TagID_Hex),
                             by= list(Release = study_tagcodes$Release),
                             FUN = function(x) {length(unique(x))}),
                         by = c("Release"))
  
  release_stats <- merge(release_stats,
                         aggregate(list(Release_location = study_tagcodes$Rel_loc),
                             by= list(Release = study_tagcodes$Release),
                             FUN = function(x) {head(x,1)}),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Release_rkm = study_tagcodes$Rel_rkm),
                             by= list(Release = study_tagcodes$Release),
                             FUN = function(x) {head(x,1)}),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Mean_length = study_tagcodes$Length),
                             by= list(Release = study_tagcodes$Release),
                             FUN = mean),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Mean_weight = study_tagcodes$Weight),
                             by= list(Release = study_tagcodes$Release),
                             FUN = mean),
                         by = c("Release"))
  
  release_stats[,c("Mean_length", "Mean_weight")] <- round(release_stats[,c("Mean_length", "Mean_weight")],1)
  
  release_stats$First_release_time <- format(release_stats$First_release_time, tz = "Etc/GMT+8")
  
  release_stats$Last_release_time <- format(release_stats$First_release_time, tz = "Etc/GMT+8")
  
  kable(release_stats, format = "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "left")
}                       
Project began on 2019-02-28 17:55:00, see tagging details below:
Release First_release_time Last_release_time Number_fish_released Release_location Release_rkm Mean_length Mean_weight
DurhamFerry 2019-03-12 20:41:00 2019-03-12 20:41:00 354 DurhamFerry 183.78 80.6 5.2
FreemontFord 2019-02-28 17:55:00 2019-02-28 17:55:00 347 FreemontFord 270.93 80.0 5.1



2. Real-time Fish Detections


Data current as of 2025-04-22 08:00:00. All times in Pacific Standard Time.

library(reshape2)

setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

detects_study <- read.csv("C:/Users/field/Desktop/Real-time data massaging/products/Study_detection_files/detects_SCARF_San_Joaquin_Spring_run_2019.csv", stringsAsFactors = F)
detects_study$DateTime_PST <- as.POSIXct(detects_study$DateTime_PST, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")

if(nrow(detects_study)>0){

  detects_study <- merge(detects_study, study_tagcodes[,c("TagID_Hex", "RelDT", "StudyID", "Release", "tag_life")], by.x = "TagCode", by.y = "TagID_Hex")

}

detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]

if (nrow(detects_benicia)>0) {
  detects_benicia <- merge(detects_benicia,aggregate(list(first_detect = detects_benicia$DateTime_PST), by = list(TagCode= detects_benicia$TagCode), FUN = min))
  
  detects_benicia$Day <- as.Date(detects_benicia$first_detect, "Etc/GMT+8")
  
  starttime <- as.Date(min(detects_benicia$RelDT), "Etc/GMT+8")
  endtime <- min(as.Date(c(Sys.time())), max(as.Date(detects_benicia$RelDT)+(detects_benicia$tag_life*1.5)))
  #wlk_flow <- cdec_query("COL", "20", "H", starttime, endtime+1)
  #wlk_flow$datetime <- as.Date(wlk_flow$datetime)
  #wlk_flow_day <- aggregate(list(parameter_value = wlk_flow$parameter_value), by = list(Day = wlk_flow$datetime), FUN = mean, na.rm = T)
  
  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))
  
  rels <- unique(study_tagcodes[study_tagcodes$StudyID == unique(detects_benicia$StudyID), "Release"])
  rel_num <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_benicia$Release))])
  
  tagcount <- aggregate(list(unique_tags = detects_benicia$TagCode), by = list(Day = detects_benicia$Day, Release = detects_benicia$Release ), FUN = function(x){length(unique(x))})
  tagcount1 <- reshape2::dcast(tagcount, Day ~ Release)
                    
  daterange1 <- merge(daterange, tagcount1, all.x=T)
  
  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == 'x'] <- paste(i)
    }
  }
  
  #daterange2 <- merge(daterange1, wlk_flow_day, by = "Day", all.x = T)
  daterange2 <- daterange1
  
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL
  
  par(mar=c(6, 5, 2, 5) + 0.1)
  barp <- barplot(t(daterange2[,1:ncol(daterange2)]), plot = FALSE, beside = T)
  barplot(t(daterange2[,1:ncol(daterange2)]), beside = T, col=rainbow(rel_num), 
          xlab = "", ylab = "Number of fish arrivals per day", 
          ylim = c(0,max(daterange2[,1:ncol(daterange2)], na.rm = T)*1.2), 
          las = 2, xlim=c(0,max(barp)+1), cex.lab = 1.5, yaxt = "n", xaxt = "n")#, 
          #legend.text = colnames(daterange2[,1:ncol(daterange2)-1]),
          #args.legend = list(x ='topright', bty='n', inset=c(-0.2,0)), title = "Release Group")
  legend(x ='topleft', legend = colnames(daterange2)[1:ncol(daterange2)], fill= rainbow(rel_num), horiz = T, title = "Release Group")
  ybreaks <- if(max(daterange2[,1:ncol(daterange2)], na.rm = T) < 4) {max(daterange2[,1:ncol(daterange2)], na.rm = T)} else {5}
  xbreaks <- if(ncol(barp) > 10) {seq(1, ncol(barp), 2)} else {1:ncol(barp)}
  barpmeans <- colMeans(barp)
  axis(1, at = barpmeans[xbreaks], labels = rownames(daterange2)[xbreaks], las = 2)
  axis(2, at = pretty(0:max(daterange2[,1:ncol(daterange2)], na.rm = T), ybreaks))
  box()

#par(new=T)

#plot(x = barpmeans, daterange2$parameter_value, yaxt = "n", xaxt = "n", ylab = "", xlab = "", col = "blue", type = "l", lwd=2, xlim=c(0,max(barp)+1), ylim = c(min(daterange2$parameter_value, na.rm = T), max(daterange2$parameter_value, na.rm=T)*1.1))#, ylab = "Returning adults", xlab= "Outmigration year", yaxt="n", col="red", pch=20)
#axis(side = 4)#, labels = c(2000:2016), at = c(2000:2016))
#mtext("Flow (cfs) at Colusa Bridge", side=4, line=3, cex=1.5, col="blue")

}else{
  print("No detections at Benicia yet")
}
2.1 Detections at Benicia Bridge

2.1 Detections at Benicia Bridge



3. Survival and Routing Probability


setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

library(RMark)

gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)
study_count <- nrow(study_tagcodes)
  
if (nrow(detects_benicia) == 0){
  "No detections yet"
} else {
  

  
  benicia <- read.csv("benicia_surv.csv", stringsAsFactors = F)
  benicia$RelDT <- as.POSIXct(benicia$RelDT)

  ## Only do survival to Benicia here
  test3 <- detects_study[detects_study$rkm < 53,]
  
  ## Create inp for survival estimation
  
  inp <- as.data.frame(reshape2::dcast(test3, TagCode ~ rkm, fun.aggregate = length))
  
  ## Sort columns by river km in descending order
  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1
  
  inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]

  inp <- merge(study_tagcodes, inp, by.x = "TagID_Hex", by.y = "TagCode", all.x = T)
  
  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]
  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0] <- 1
  
  inp <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))

  inp[,groups] <- 0
  for (i in groups) {
    inp[as.character(inp$Release) == i, i] <- 1
  }
  
  if(length(groups) > 1){
    inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""), " ",apply(inp[,groups], 1, paste, collapse=" ")," ;",sep = "")
  }else{
    inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""), " ",inp[,groups]," ;",sep = "")
  }
  
  
  write.table(inp$inp_final,"WRinp.inp",row.names = F, col.names = F, quote = F)
  
  if(length(groups) > 1){
  
    WRinp <- convert.inp("WRinp.inp", group.df=data.frame(rel=groups))
    WR.process <- process.data(WRinp, model="CJS", begin.time=1, groups = "rel") 
    
    WR.ddl <- make.design.data(WR.process)
    
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    
    WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)
    
    WR.surv <- round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1)
    WR.surv <- rbind(WR.surv, round(WR.mark.rel$results$real[seq(from=1,to=length(groups)*2,by = 2),c("estimate", "se", "lcl", "ucl")] * 100,1))
    
  }else{
    
    WRinp <- convert.inp("WRinp.inp")
    WR.process <- process.data(WRinp, model="CJS", begin.time=1) 
    
      
    WR.ddl <- make.design.data(WR.process)
    
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)

    WR.surv <- round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1)
    
  }
  
  WR.surv$Detection_efficiency <- NA
  WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
    
  WR.surv <- cbind(Release = c("ALL", groups), WR.surv)

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")

  print(kable(WR.surv1, row.names = F, "html", caption = '3.1 Minimum survival to Benicia Bridge East Span (using CJS survival model)') %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "left"))    
  
  ## Find mean release time per release group, and ALL
  reltimes <- aggregate(list(RelDT = study_tagcodes$RelDT), by = list(Release = study_tagcodes$Release), FUN = mean)
  reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$RelDT)))

  ## Assign whether the results are tentative or final
  quality <- "tentative"
  if(endtime < as.Date(c(Sys.time()))) { quality <- "final"}
  WR.surv <- merge(WR.surv, reltimes, by = "Release", all.x = T)
  
  WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = '1970-01-01')
  
  ## remove old benicia record for this studyID
  benicia <- benicia[!benicia$StudyID == unique(study_tagcodes$StudyID),]
  
  benicia <- rbind(benicia, data.frame(WR.surv, StudyID = unique(study_tagcodes$StudyID), data_quality = quality))
  
  write.csv(benicia, "benicia_surv.csv", row.names = F, quote = F) 
  
}
3.1 Minimum survival to Benicia Bridge East Span (using CJS survival model)
Release Group Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%)
ALL 6.1 0.9 4.6 8.2 100
DurhamFerry 5.9 1.3 3.9 8.9 NA
FreemontFord 6.3 1.3 4.2 9.4 NA



4. Detection Statistics


setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

if (nrow(detects_study) == 0){
  "No detections yet"
} else {
  
  arrivals <- aggregate(list(DateTime_PST = detects_study$DateTime_PST), by = list(general_location = detects_study$general_location, TagCode = detects_study$TagCode), FUN = min)
  
  tag_stats <- aggregate(list(First_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = min)
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Mean_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = mean), 
                     by = c("general_location"))
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Last_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = max), 
                     by = c("general_location"))
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Fish_count = arrivals$TagCode), 
                         by= list(general_location = arrivals$general_location), 
                         FUN = function(x) {length(unique(x))}), 
                     by = c("general_location"))
  tag_stats$Percent_arrived <- round(tag_stats$Fish_count/study_count * 100,2)
      
  tag_stats <- merge(tag_stats, unique(gen_locs[,c("general_location", "rkm")]))
  
  tag_stats <- tag_stats[order(tag_stats$rkm, decreasing = T),]
  
  tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")

  print(kable(tag_stats, row.names = F, 
              caption = "4.1 Detections for all releases combined",
              "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "left"))
  count=1
  for (j in sort(unique(study_tagcodes$release))) {
    
    if(nrow(detects_study[detects_study$release == j,]) > 0 ) {
      count=count+1  
      temp <- detects_study[detects_study$release == j,]
      
        arrivals1 <- aggregate(list(DateTime_PST = temp$DateTime_PST), by = list(general_location = temp$general_location, TagCode = temp$TagCode), FUN = min)
  
      rel_count <- nrow(study_tagcodes[study_tagcodes$release == j,])
  
      tag_stats1 <- aggregate(list(First_arrival = arrivals1$DateTime_PST), 
                             by= list(general_location = arrivals1$general_location), 
                             FUN = min)
      tag_stats1 <- merge(tag_stats1, 
                         aggregate(list(Mean_arrival = arrivals1$DateTime_PST), 
                             by= list(general_location = arrivals1$general_location), 
                             FUN = mean), 
                         by = c("general_location"))
      tag_stats1 <- merge(tag_stats1, 
                   aggregate(list(Last_arrival = arrivals1$DateTime_PST), 
                       by= list(general_location = arrivals1$general_location), 
                       FUN = max), 
                   by = c("general_location"))
      tag_stats1 <- merge(tag_stats1, 
                         aggregate(list(Fish_count = arrivals1$TagCode), 
                                   by= list(general_location = arrivals1$general_location), 
                                   FUN = function(x) {length(unique(x))}), 
                         by = c("general_location"))
      
      tag_stats1$Percent_arrived <- round(tag_stats1$Fish_count/rel_count * 100,2)
    
      tag_stats1 <- merge(tag_stats1, unique(gen_locs[,c("general_location", "rkm")]))
    
      tag_stats1 <- tag_stats1[order(tag_stats1$rkm, decreasing = T),]
      
      tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")
      
      final_stats <- kable(tag_stats1, row.names = F, 
            caption = paste("4.",count," Detections for ",j," release groups", sep = ""),
            "html")
      
      print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive"), full_width = F, position = "left"))
      
    } else {
      cat("\n\n\\pagebreak\n")
      print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
      cat("\n\n\\pagebreak\n")
    }
  }
}
4.1 Detections for all releases combined
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived rkm
SJ_Hills_Ferry 2019-03-08 06:26:40 2019-03-10 17:27:25 2019-03-14 04:27:14 18 2.57 257.000
Old River 2019-03-30 23:53:52 2019-04-12 01:13:29 2019-04-19 12:29:21 19 2.71 153.001
MiddleRiver 2019-03-21 00:29:58 2019-03-31 19:48:16 2019-04-08 10:51:52 3 0.43 150.000
CVP_Tank 2019-03-24 17:55:48 2019-04-09 19:21:27 2019-04-20 19:17:28 6 0.86 144.531
CVP_UpStream_TrashRack 2019-03-15 01:59:05 2019-04-07 23:09:04 2019-04-20 18:21:28 37 5.28 144.531
Clifton_Court_RadGates 2019-03-14 02:08:17 2019-04-01 15:07:18 2019-04-20 15:39:24 24 3.42 142.721
Clifton_Court_SWP 2019-03-14 07:35:22 2019-03-27 14:39:09 2019-04-16 10:41:31 35 4.99 142.721
Benicia_east 2019-03-20 19:25:33 2019-04-10 23:11:18 2019-04-27 15:39:16 43 6.13 52.240
Benicia_west 2019-03-20 19:31:57 2019-04-10 23:16:08 2019-04-27 15:42:43 43 6.13 52.040
rm(list = ls())
cleanup(ask = F)