Central Valley Enhanced

Acoustic Tagging Project

logo





Stanislaus River wild steelhead, USFWS Fall Releases

2024-2025 Season (PROVISIONAL DATA)


Telemetry Study Template for this study can be found here



1. Project Status


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

library(knitr)
library(kableExtra)
library(lubridate)
library(data.table)
library(ggplot2)
library(RMark)
library(scales)
library(viridis)
library(forcats)
library(reshape2)
library(png)
library(dataRetrieval)
library(rerddap)
library(plotly)

study <- "Stan_Steelhead_USFWS_2025"

detects_study <- fread("study_detections.csv", stringsAsFactors = F,
                       colClasses = c(DateTime_PST = "character", RelDT = "character")) %>%
   filter(Study_ID == study) %>%
   mutate(DateTime_PST = as.POSIXct(DateTime_PST, format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT+8"),
          release_time = as.POSIXct(RelDT, format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT+8")) %>%
   rename(., weight=Weight, length=Length, release_rkm=Rel_rkm, release_location=Rel_loc, river_km=rkm)


latest <- read.csv("latest_download.csv", stringsAsFactors = F)$x

##################################################################################################################
#### TO RUN THE FOLLOWING CODE CHUNKS FROM HERE ON DOWN USING R ERDDAP, UN-COMMENT THESE NEXT 9 LINES OF CODE ####
##################################################################################################################
# cache_delete_all()
# query = paste('&','Study_ID','="', study, '"', sep = '')
# datafile=URLencode(paste("https://oceanview.pfeg.noaa.gov/erddap/tabledap/","FEDcalFishTrack",".csv?",query,sep = ""))
# options(url.method = "libcurl", download.file.method = "libcurl", timeout = 180)
# detects_study <- data.frame(read.csv(datafile,row.names = NULL, stringsAsFactors = F))
# detects_study <- detects_study[-1,]
# detects_study$DateTime_PST <- as.POSIXct(detects_study$local_time, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
# detects_study$release_time <- as.POSIXct(detects_study$release_time, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
# detects_study$river_km <- as.numeric(detects_study$river_km)
##################################################################################################################

Study is in progress. Data current as of 2025-04-25 22:00:00. All times in Pacific Standard Time.

if (nrow(detects_study) == 0){
   cat("Study has not yet begun  ")
} else {
   if (min(detects_study$release_time) > Sys.time()){
      cat("Study has not yet begun, below data is a placeholder:  ")
   }
   if (min(detects_study$release_time) < Sys.time()){
      cat(paste("Study began on ", min(detects_study$release_time), ", see tagging details below:", sep = ""))
   }

   ######################################
   #### RELEASE GROUPS ASSIGNED HERE ####
   ######################################
   detects_study$Release <- detects_study$release_location

   study_tagcodes <- as.data.frame(unique(detects_study[,c("TagCode", "release_time", "weight", "length", "release_rkm",
                                                        "release_location", "Release","Rel_latitude","Rel_longitude")]))

   release_stats <- study_tagcodes %>%
      group_by(Release) %>%
      summarise(First_release_time = min(release_time),
                Last_release_time = max(release_time),
                Number_fish_released = length(unique(TagCode)),
                Release_location = head(release_location, 1),
                Release_rkm = head(release_rkm,1),
                Mean_length = mean(length, na.rm=T),
                Mean_weight = mean(weight, na.rm=T),
                Release_lat = head(Rel_latitude,1),
                Release_lon = head(Rel_longitude,1)) %>%
      mutate(Mean_length = round(Mean_length, 1),
             Mean_weight = round(Mean_weight, 1),
             First_release_time = format(First_release_time, tz = "Etc/GMT+8"),
             Last_release_time = format(Last_release_time, tz = "Etc/GMT+8")) %>%
      arrange(First_release_time)

   release_stats_all <- study_tagcodes %>%
     summarise(First_release_time = min(release_time),
               Last_release_time = max(release_time),
               Number_fish_released = length(unique(TagCode)),
               Release_location = NA,
               Release_rkm = mean(release_rkm,na.rm = T),
               Mean_length = mean(length, na.rm=T),
               Mean_weight = mean(weight, na.rm=T),
               Release_lat = head(Rel_latitude,1),
               Release_lon = head(Rel_longitude,1)) %>%
     mutate(Mean_length = round(Mean_length, 1),
            Mean_weight = round(Mean_weight, 1),
            Release_rkm = round(Release_rkm,1),
            First_release_time = format(First_release_time, tz = "Etc/GMT+8"),
            Last_release_time = format(Last_release_time, tz = "Etc/GMT+8"))
   release_stats <- rbind(release_stats, data.frame(Release = "ALL", release_stats_all))

kable(release_stats[,!names(release_stats)%in% c("Release_lon","Release_lat","release_location")], format = "html", row.names = F) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left")
}
Study began on 2024-11-18 15:20:00, see tagging details below:
Release First_release_time Last_release_time Number_fish_released Release_location Release_rkm Mean_length Mean_weight
Goodwin_Dam_Rel 2024-11-18 15:20:00 2024-12-19 12:01:00 27 Goodwin_Dam_Rel 284.16 231.6 150.7
Two_Mile_Bar_Rel 2024-11-19 16:00:00 2024-12-19 15:15:00 21 Two_Mile_Bar_Rel 281.91 266.6 214.8
Blw_Russian_Rapids_Rel 2024-11-20 11:48:00 2024-11-20 11:48:00 4 Blw_Russian_Rapids_Rel 276.25 263.2 186.0
Lovers_Leap_Rel 2024-11-20 15:57:00 2024-12-18 10:36:00 15 Lovers_Leap_Rel 275.05 245.0 169.5
Orange_Blossom_Rel 2024-11-21 15:34:00 2024-12-05 16:00:00 4 Orange_Blossom_Rel 266.90 177.5 76.5
Russian_Rapids_Rel 2024-12-03 10:26:00 2024-12-03 10:26:00 8 Russian_Rapids_Rel 276.66 254.2 173.2
Wildcat_Creek_Rel 2024-12-03 14:19:00 2024-12-03 14:19:00 10 Wildcat_Creek_Rel 275.65 273.1 215.5
Blw_Honolulu_Bar_Rel 2024-12-05 11:14:00 2024-12-05 11:14:00 7 Blw_Honolulu_Bar_Rel 269.12 238.1 164.7
Abv_Buttonbush_Rel 2024-12-05 12:20:00 2024-12-05 12:20:00 2 Abv_Buttonbush_Rel 268.82 272.0 217.5
Abv_Orange_Blossom_Rel 2024-12-05 14:47:00 2024-12-05 14:47:00 8 Abv_Orange_Blossom_Rel 267.55 208.5 126.8
Honolulu_Bar_Rel 2024-12-16 10:40:00 2024-12-16 10:40:00 5 Honolulu_Bar_Rel 270.34 216.8 129.4
Blw_Orange_Blossom_Rel 2024-12-17 10:31:00 2024-12-17 10:31:00 7 Blw_Orange_Blossom_Rel 266.20 277.3 228.0
The_Hole_Rel 2024-12-17 12:29:00 2024-12-17 12:29:00 3 The_Hole_Rel 264.50 243.3 188.0
Valley_Oak_Rel 2024-12-17 15:00:00 2024-12-17 15:00:00 5 Valley_Oak_Rel 262.87 287.0 243.8
Abv_Horseshoe_Rel 2024-12-18 12:33:00 2024-12-18 12:33:00 2 Abv_Horseshoe_Rel 272.40 288.5 256.5
ALL 2024-11-18 15:20:00 2024-12-19 15:15:00 128 NA 275.70 247.7 178.5



2. Real-time Fish Detections


library(leaflet)
library(maps)
library(htmlwidgets)
library(leaflet.extras)
library(dplyr)
library(dbplyr)
library(DBI)
library(odbc)
library(data.table)

# Create connection with cloud database
con <- dbConnect(odbc(),
                Driver = "SQL Server",
                Server = "calfishtrack-server.database.windows.net",
                Database = "realtime_detections",
                UID = "realtime_user",
                PWD = "Pass@123",
                Port = 1433)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

## THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
   cat("No detections yet")

   # Use dbplyr to load realtime_locs and qryHexCodes sql table
   gen_locs <- tbl(con, "realtime_locs") %>% collect()
   # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F) %>% filter(is.na(stop))

   leaflet(data = gen_locs[is.na(gen_locs$stop),]) %>%
       # setView(-72.14600, 43.82977, zoom = 8) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>% 
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addMarkers(~longitude, ~latitude, label = ~general_location, group = "Receiver Sites", popup = ~location) %>% 
       # addAwesomeMarkers(~lon_dd, ~lat_dd, label = ~locality, group = "Sites", icon=icons) %>%
       addScaleBar(position = "bottomleft") %>%
          addLayersControl(
          baseGroups = c("Street Map", "Satellite", "Relief"),
          overlayGroups = c("Receiver Sites"),
          options = layersControlOptions(collapsed = FALSE)) %>%
          addSearchFeatures(targetGroups = c("Receiver Sites"))
} else {

   # Use dbplyr to load realtime_locs and qryHexCodes sql table
   gen_locs <- tbl(con, "realtime_locs") %>% collect()
   # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)

   endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                  max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))

   beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
      mutate(day = as.Date(day)) %>%
      # Subset to only look at data for the correct beacon for that day
      filter(TagCode == beacon)  %>% 
      # Only keep beacon by day for days since fish were released
      filter(day >= as.Date(min(study_tagcodes$release_time)) & day <= endtime) %>%
      dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")

   arrivals_per_day <- detects_study %>%
      group_by(general_location, TagCode) %>%
      summarise(DateTime_PST = min(DateTime_PST, na.rm = T)) %>%
      arrange(TagCode, general_location) %>%
      mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8")) %>%
      group_by(day, general_location) %>%
      summarise(New_arrivals = length(TagCode)) %>%
      na.omit() %>%
      mutate(day = as.Date(day)) %>%
      dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]), ., 
                       by = c("general_location", "day")) %>%
      arrange(general_location, day) %>%
      mutate(day = as.factor(day)) %>%
      filter(general_location != "Bench_test") %>% # Remove bench test
      filter(!(is.na(general_location))) # Remove NA locations

   ## Remove sites that were not operation the whole time
   #### FOR THE SEASONAL SURVIVAL PAGE, KEEP ALL SITES SINCE PEOPLE WANT TO SEE DETECTIONS OF LATER FISH AT NEWLY 
   #### DEPLOYED SPOTS
   gen_locs_days_in_oper <- arrivals_per_day %>%
      group_by(general_location) %>%
      summarise(days_in_oper = length(day))
   #gen_locs_days_in_oper <- gen_locs_days_in_oper[gen_locs_days_in_oper$days_in_oper ==
   #                                               max(gen_locs_days_in_oper$days_in_oper),]
   arrivals_per_day_in_oper <- arrivals_per_day %>%
      filter(general_location %in% gen_locs_days_in_oper$general_location)

   fish_per_site <- arrivals_per_day_in_oper %>%
      group_by(general_location) %>%
      summarise(fish_count = sum(New_arrivals, na.rm=T))

   gen_locs_mean_coords <- gen_locs %>%
      filter(is.na(stop) & general_location %in% fish_per_site$general_location) %>%
      group_by(general_location) %>%
      summarise(latitude = mean(latitude), # estimate mean lat and lons for each genloc
                longitude = mean(longitude))

   fish_per_site <- merge(fish_per_site, gen_locs_mean_coords)
   release_stats_agg <- aggregate(cbind(Release_lon, Release_lat) ~ Release_location, data = release_stats[release_stats$Release != "ALL",], FUN = mean)
   release_stats_agg <- merge(release_stats_agg, aggregate(Number_fish_released ~ Release_location, data = release_stats[release_stats$Release != "ALL",], FUN = sum))

   if(!is.na(release_stats$Release_lat[1])){
     leaflet(data = fish_per_site) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addPulseMarkers(data = fish_per_site[seq(from = 1, to = nrow(fish_per_site), by = 2),], lng = ~longitude, lat = ~latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, direction = "left", textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addPulseMarkers(data = fish_per_site[seq(from = 2, to = nrow(fish_per_site), by = 2),], lng = ~longitude, lat = ~latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, direction = "right", textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addCircleMarkers(data = release_stats_agg, ~Release_lon, ~Release_lat, label = ~Number_fish_released, stroke = F, color = "blue", fillOpacity = 1, 
                        group = "Release Sites", popup = ~Release_location, labelOptions = labelOptions(noHide = T, textsize = "15px")) %>%
       addScaleBar(position = "bottomleft") %>%
       addLegend("bottomright", labels = c("Receivers", "Release locations"), colors = c("red","blue")) %>%
       addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"), options = layersControlOptions(collapsed = FALSE))
   } else {
     leaflet(data = fish_per_site) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addPulseMarkers(lng = fish_per_site$longitude, lat = fish_per_site$latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addScaleBar(position = "bottomleft") %>%
       addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"),
                        options = layersControlOptions(collapsed = FALSE))
   }
}

2.1 Map of unique fish detections at operational realtime detection locations


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) > 0){

   detects_study <- detects_study[order(detects_study$TagCode, detects_study$DateTime_PST),]
   ## Now estimate the time in hours between the previous and next detection, for each detection. 
   detects_study$prev_genloc <- shift(detects_study$general_location, fill = NA, type = "lag")
   #detects_study$prev_genloc <- shift(detects_study$General_Location, fill = NA, type = "lag")
   ## Now make NA the time diff values when it's between 2 different tagcodes or genlocs
   detects_study[which(detects_study$TagCode != shift(detects_study$TagCode, fill = NA, type = "lag")), "prev_genloc"] <- NA
   detects_study[which(detects_study$general_location != detects_study$prev_genloc), "prev_genloc"] <- NA
   detects_study$mov_score <- 0
   detects_study[is.na(detects_study$prev_genloc), "mov_score"] <- 1
   detects_study$mov_counter <- cumsum(detects_study$mov_score)

   detects_summary <- aggregate(list(first_detect = detects_study$DateTime_PST), by = list(TagCode = detects_study$TagCode, release_time = detects_study$release_time, mov_counter = detects_study$mov_counter ,general_location = detects_study$general_location, river_km = detects_study$river_km, release_rkm = detects_study$release_rkm), min)

   detects_summary <- detects_summary[is.na(detects_summary$first_detect) == F,]
   releases <- aggregate(list(first_detect = detects_study$release_time), by = list(TagCode = detects_study$TagCode, release_time = detects_study$release_time, release_location=detects_study$release_location, release_rkm = detects_study$release_rkm), min)
   releases$river_km <- releases$release_rkm
   releases$mov_counter <- NA
   releases$general_location <- paste(releases$release_location,"_RELEASE", sep = "")
   releases$release_location <- NULL

   detects_summary <- rbindlist(list(detects_summary, releases), use.names = T)
   detects_summary <- detects_summary[order(detects_summary$TagCode, detects_summary$first_detect),]

   starttime <- as.Date(min(detects_study$release_time), "Etc/GMT+8")
   ## Endtime should be either now, or end of predicted tag life, whichever comes first
   endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d"))+1, max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))
   #par(mar=c(6, 5, 2, 5) + 0.1)

   plot_ly(detects_summary, x = ~first_detect, y = ~river_km, color = ~TagCode, width = 900, height = 600, dynamicTicks = TRUE, connectgaps = TRUE, mode = "lines+markers", type = "scatter",hoverinfo = "text",
      text = ~paste("</br> TagCode: ", TagCode,
                    "</br> Arrival: ", first_detect,
                    "</br> Location: ", general_location)) %>%
      layout(showlegend = T, 
         xaxis = list(title = "<b> Date <b>", mirror=T,ticks="outside",showline=T, range=c(starttime,endtime)),
         yaxis = list(title = "<b> Kilometers upstream of the Golden Gate <b>", mirror=T,ticks="outside",showline=T, range=c(max(detects_study$Rel_rkm)+10, min(gen_locs[is.na(gen_locs$stop),"rkm"])-10)),
         legend = list(title=list(text='<b> Tag Code </b>')),
         margin=list(l = 50,r = 100,b = 50,t = 50)
   )

}else{
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Kilometers upstream of the Golden Gate")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}

2.2 Waterfall Detection Plot


_______________________________________________________________________________________________________

library(tidyr)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_3 <- detects_study %>% filter(general_location == "Stan_Valley_Oak")

if(nrow(detects_3) == 0){
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  detects_3 <- detects_3 %>%
    dplyr::left_join(., detects_3 %>%
                        group_by(TagCode) %>% 
                        summarise(first_detect = min(DateTime_PST))) %>%
                        mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))

  starttime <- as.Date(min(detects_3$release_time), "Etc/GMT+8")

  # Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  rels            <- unique(study_tagcodes$Release)
  rel_num         <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_3$Release))])

  tagcount1 <- detects_3 %>%
               group_by(Day, Release) %>%
               summarise(unique_tags = length(unique(TagCode))) %>%
               spread(Release, unique_tags)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == "x"] <- paste(i)
    }
  }

  # Download flow data
  flow_day <- readNWISuv(siteNumbers = "11303000", parameterCd="00060", startDate = starttime, 
                         endDate = endtime+1) %>%
                  mutate(Day = as.Date(format(dateTime, "%Y-%m-%d"))) %>%
                  group_by(Day) %>%
                  summarise(parameter_value = mean(X_00060_00000))

  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange2 <- daterange1[,order(colnames(daterange1))] %>%
                dplyr::left_join(., flow_day, by = "Day")
  rownames(daterange2) <- daterange2$Day
  daterange2$Date      <- daterange2$Day
  daterange2$Day       <- NULL
  daterange2_flow      <- daterange2 %>% select(Date, parameter_value)
  daterange3           <- melt(daterange2[,!(names(daterange2) %in% c("parameter_value"))], 
                               id.vars = "Date", variable.name = ".")
  daterange3$.         <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))

  par(mar=c(6, 5, 2, 5) + 0.1)
  ay <- list(
    overlaying = "y",
    nticks = 5,
    color = "#947FFF",
    side = "right",
    title = "Flow (cfs) at Ripon",
    automargin = TRUE
  )

  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
          add_bars(x = ~Date, y = ~value, color = ~.) %>%
          add_annotations(text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                          x=0.01, xanchor="left",
                          y=1.056, yanchor="top",    # Same y as legend below
                          legendtitle=TRUE, showarrow=FALSE ) %>%
          add_lines(x=~daterange2_flow$Date, 
                    y=~daterange2_flow$parameter_value, 
                    line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, 
                    inherit=FALSE) %>%
          layout(yaxis2 = ay,showlegend = T, 
          barmode = "stack",
          xaxis = list(title = "Date", mirror=T,ticks="outside",showline=T), 
          yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks="outside",showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50))

}

2.3 Detections at Valley Oak (Stanislaus) versus Stanislaus River flows at Ripon for duration of tag life


_______________________________________________________________________________________________________

library(tidyr)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_3 <- detects_study %>% filter(general_location == "Stan_Caswell")

if(nrow(detects_3) == 0){
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  detects_3 <- detects_3 %>%
    dplyr::left_join(., detects_3 %>%
                        group_by(TagCode) %>% 
                        summarise(first_detect = min(DateTime_PST))) %>%
                        mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))

  starttime <- as.Date(min(detects_3$release_time), "Etc/GMT+8")

  # Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  rels            <- unique(study_tagcodes$Release)
  rel_num         <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_3$Release))])

  tagcount1 <- detects_3 %>%
               group_by(Day, Release) %>%
               summarise(unique_tags = length(unique(TagCode))) %>%
               spread(Release, unique_tags)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == "x"] <- paste(i)
    }
  }

  # Download flow data
  flow_day <- readNWISuv(siteNumbers = "11303000", parameterCd="00060", startDate = starttime, 
                         endDate = endtime+1) %>%
                  mutate(Day = as.Date(format(dateTime, "%Y-%m-%d"))) %>%
                  group_by(Day) %>%
                  summarise(parameter_value = mean(X_00060_00000))

  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange2 <- daterange1[,order(colnames(daterange1))] %>%
                dplyr::left_join(., flow_day, by = "Day")
  rownames(daterange2) <- daterange2$Day
  daterange2$Date      <- daterange2$Day
  daterange2$Day       <- NULL
  daterange2_flow      <- daterange2 %>% select(Date, parameter_value)
  daterange3           <- melt(daterange2[,!(names(daterange2) %in% c("parameter_value"))], 
                               id.vars = "Date", variable.name = ".")
  daterange3$.         <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))

  par(mar=c(6, 5, 2, 5) + 0.1)
  ay <- list(
    overlaying = "y",
    nticks = 5,
    color = "#947FFF",
    side = "right",
    title = "Flow (cfs) at Ripon",
    automargin = TRUE
  )

  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
          add_bars(x = ~Date, y = ~value, color = ~.) %>%
          add_annotations(text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                          x=0.01, xanchor="left",
                          y=1.056, yanchor="top",    # Same y as legend below
                          legendtitle=TRUE, showarrow=FALSE ) %>%
          add_lines(x=~daterange2_flow$Date, 
                    y=~daterange2_flow$parameter_value, 
                    line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, 
                    inherit=FALSE) %>%
          layout(yaxis2 = ay,showlegend = T, 
          barmode = "stack",
          xaxis = list(title = "Date", mirror=T,ticks="outside",showline=T), 
          yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks="outside",showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50))

}

2.4 Detections at Caswell (Stanislaus) versus Stanislaus River flows at Ripon for duration of tag life


_______________________________________________________________________________________________________

library(dplyr)
library(cder)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

recv_locs <- gen_locs

detects_3 <- detects_study %>% filter(general_location %in% c("Old_River_Quimby", "Holland_Cut_Quimby", "Old River", "MiddleRiver", "Clifton_Court_US_Radial_Gates", "SWP_radial_gates_DS", "SWP_radial_gates_US", "CVP_Trash_Rack_1", "CVP_Tank", "SWP_intake", "Clifton_Court_Intake_Canal"))

if(nrow(detects_3) > 0){
  # Save the last detection at each location
  detects_3 <- detects_3 %>%
               dplyr::left_join(., detects_3 %>%
                                   group_by(TagCode, general_location) %>%
                                   summarise(last_detect = max(DateTime_PST))) %>%
               mutate(Day = as.Date(last_detect, "Etc/GMT+8")) # Convert last detection to day

  starttime <- as.Date(min(detects_3$release_time), "Etc/GMT+8")
  ## Endtime should be either now or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
             max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  daterange <- data.frame(Date = seq.Date(from = starttime, to = endtime, by = "day"))

  rels            <- unique(study_tagcodes$Release)
  rel_num         <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_3$Release))])

  tagcount1 <- detects_3 %>%
              group_by(Day, general_location) %>%
              summarise(unique_tags = length(unique(TagCode))) %>%
              rename(., Date = Day, Location = general_location) %>%
              mutate(Location = factor(Location, levels = c("Old_River_Quimby", "Holland_Cut_Quimby", "Old River",
                                                            "MiddleRiver", "Clifton_Court_US_Radial_Gates",
                                                            "SWP_radial_gates_DS", "SWP_radial_gates_US",
                                                            "CVP_Trash_Rack_1", "CVP_Tank", "SWP_intake",
                                                            "Clifton_Court_Intake_Canal")))

  tagcount1 <- reshape2::dcast(tagcount1, Date ~ Location, drop = FALSE)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0
  daterange2 <- daterange1
  rownames(daterange2) <- daterange2$Date

  par(mar=c(6, 5, 2, 5) + 0.1)

  daterange3 <- melt(daterange2, id.vars = "Date", variable.name = ".", )

  # Add latitude to daterange df
  locs <- data.frame(general_location = unique(daterange3$.)) %>%
          left_join(., recv_locs, by = "general_location") %>% filter(is.na(stop) | stop > min(detects_3$RelDT)) %>%
          select(location, general_location, latitude) %>% group_by(general_location) %>%
          summarise(latitude = mean(latitude))
  locs <- locs[order(locs$latitude, decreasing = FALSE),]
  locs$loc_num <- seq.int(nrow(locs))
  daterange4 <- daterange3 %>% left_join(., locs, by = c("." = "general_location"))

  # Get flow data from CDEC
  flow <- cdec_query("OMR", "20", "H", starttime, endtime)

  # Fish movement
  move_df <- detects_3 %>%
             distinct(., TagCode, last_detect, general_location,
                      .keep_all = TRUE) # find last detection and remove duplicate value for that column
  dup_codes   <- move_df$TagCode[which(duplicated(move_df$TagCode))] # then get the tag codes that were detected at multiple locations
  move_df     <- move_df[(move_df$TagCode %in% dup_codes),] # save only the fish that were detected at multiple locations
  if(nrow(move_df)>1){
   move_df$Day <- as.Date(move_df$last_detect, "Etc/GMT+8")
   new_move_df <- NULL
   for(i in 1:length(unique(move_df$TagCode))){
     tmp_code    <- unique(move_df$TagCode)[i]
     tmp_move_df <- move_df %>% filter(TagCode == tmp_code) # subset data
     tmp_move_df <- tmp_move_df[order(tmp_move_df$last_detect, decreasing = FALSE),] # order data
     for(j in 1:(length(tmp_move_df$TagCode) - 1)){
       tmp_new_move_df <- data.frame(TagCode = tmp_code, location1 = tmp_move_df$general_location[j],
                                    day1 = tmp_move_df$Day[j], location2 = tmp_move_df$general_location[j+1],
                                    day2 = tmp_move_df$Day[j+1])
       tmp_new_move_df$loc_num1 <- locs$loc_num[which(locs$general_location == tmp_new_move_df$location1)]
       tmp_new_move_df$loc_num2 <- locs$loc_num[which(locs$general_location == tmp_new_move_df$location2)]
       new_move_df <- rbind(new_move_df, tmp_new_move_df)
     }
   }

   fig1 <- plot_ly(data = daterange4, type = "scatter", mode = "markers", 
                   marker = list(color = ~ value, size = ~value*5, 
                                 colorbar = list(title = "Num. of arrivals", len = 0.35, x = 1.06, y = 0.73), 
                                 colorscale = "Viridis", line = list(width = 0)),
                    hoverinfo = "text", text = ~paste("Date:", Date,"<br># of arrivals:", value),
                    x = ~Date, y = ~loc_num) %>%
            add_annotations(x = new_move_df$day2, y = new_move_df$loc_num2, axref="x", ayref="y", text="", showarrow=TRUE,
                           ax = new_move_df$day1, ay = new_move_df$loc_num1, arrowcolor = "darkgrey",
                           opacity = 0.5, standoff = 5, startstandoff = 5) %>%
           layout(xaxis = list(range = c(min(daterange$Date) - 1, max(daterange$Date) + 1), showgrid = FALSE, showline = TRUE),
                  yaxis = list(range = c(min(locs$loc_num) - 1, max(locs$loc_num) + 1), showline = TRUE,
                  title = "", ticktext = locs$general_location, tickvals = locs$loc_num), showlegend = FALSE) %>% 
           add_annotations(text = sprintf("<b>North<b>"), xref = "paper", yref = "paper", x = -0.13, xanchor = "left",
                           y = 1.05, yanchor = "top", showarrow = FALSE, font = list(size = 20)) %>%
           add_annotations(text = sprintf("<b>South<b>"), xref = "paper", yref = "paper", x = -0.13, xanchor = "left",
                           y = 0.04, yanchor = "top", showarrow = FALSE, font = list(size = 20))

   fig2 <- plot_ly(data = flow, type = "scatter", mode = "lines") %>%
           add_trace(x = ~DateTime, y = ~Value) %>%
           layout(xaxis = list(range = c(min(daterange$Date) - 1, max(daterange$Date) + 1), showgrid = FALSE, showline = TRUE),
                  yaxis = list(title = "Flow (cfs) at OMR"))

   subplot(fig1, fig2, nrows = 2, margin = 0.04, heights = c(0.7, 0.3), titleY = TRUE)

 }else{
     plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
       text(1.5,1.5, labels = "NOT ENOUGH DETECTIONS", cex = 2)
 }
} else {
  plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}

2.5 (BETA) Detections in the Old and Middle rivers (OMR) for duration of tag life (top) and flow at OMR (bottom). Arrows indicate fish movement.


_______________________________________________________________________________________________________

library(tidyr)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_4 <- detects_study %>% filter(general_location == "Benicia_west" | general_location == "Benicia_east")

if(nrow(detects_4) == 0){
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  detects_4 <- detects_4 %>%
    dplyr::left_join(., detects_4 %>%
                        group_by(TagCode) %>% 
                        summarise(first_detect = min(DateTime_PST))) %>%
                        mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))

  starttime <- as.Date(min(detects_4$release_time), "Etc/GMT+8")

  # Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  rels            <- unique(study_tagcodes$Release)
  rel_num         <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_4$Release))])

  tagcount1 <- detects_4 %>%
               group_by(Day, Release) %>%
               summarise(unique_tags = length(unique(TagCode))) %>%
               spread(Release, unique_tags)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == "x"] <- paste(i)
    }
  }

  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
  daterange2 <- daterange1
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL

  par(mar=c(6, 5, 2, 5) + 0.1)

  daterange2$Date <- as.Date(row.names(daterange2))
  daterange3      <- melt(daterange2, id.vars = "Date", variable.name = ".", )
  daterange3$.    <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))

  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
          add_bars(x = ~Date, y = ~value, color = ~.) %>%
          add_annotations(text="Release (click on legend<br> items to isolate)", xref="paper", yref="paper",
                          x=0.01, xanchor="left",
                          y=1.02, yanchor="bottom",    # Same y as legend below
                          legendtitle=TRUE, showarrow=FALSE ) %>%
          layout(yaxis2 = ay,showlegend = T, 
          barmode = "stack",
          xaxis = list(title = "Date", mirror=T,ticks="outside",showline=T), 
          yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks="outside",showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.01, yanchor="bottom", xanchor="left"),
          margin=list(l = 50,r = 100,b = 50,t = 50))
}

2.6 Detections at Benicia Bridge for duration of tag life



3. Survival and Routing Probability


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

try(benicia <- read.csv("benicia_surv.csv", stringsAsFactors = F))

detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]
endtime         <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

if(nrow(detects_benicia) == 0){
  if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
    WR.surv <- data.frame("Release"="ALL", "estimate"=0, "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)

  } else {
    WR.surv <- data.frame("Release"=NA, "estimate"="NO DETECTIONS YET", "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
  }

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.1 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

} else if(length(table(detects_benicia$general_location)) == 1){
  if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
    WR.surv <- data.frame("Release"="ALL", "estimate"=round(length(unique(detects_benicia$TagCode))/length(unique(detects_study$TagCode))*100,1),
                          "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)

  } else {
    WR.surv <- data.frame("Release" = NA, "estimate" = "NOT ENOUGH DETECTIONS", "se" = NA, "lcl" = NA, "ucl" = NA, "Detection_efficiency" = NA)
  }

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.1 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
         kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

} else {
  # Only do survival to Benicia here
  test3 <- detects_study[which(detects_study$river_km < 53),]

  # calculate mean and SD travel time
  travel <- aggregate(list(first_detect = test3$DateTime_PST), by = list(Release = test3$Release, TagCode = test3$TagCode, RelDT = test3$RelDT), min)
  travel$days <- as.numeric(difftime(travel$first_detect, travel$RelDT, units = "days"))

  travel_final <- aggregate(list(mean_travel_time = travel$days), by = list(Release = travel$Release), mean)
  travel_final <- merge(travel_final, aggregate(list(sd_travel_time = travel$days), by = list(Release = travel$Release), sd))
  travel_final <- merge(travel_final, aggregate(list(n = travel$days), by = list(Release = travel$Release), length))
  travel_final <- rbind(travel_final, data.frame(Release = "ALL", mean_travel_time = mean(travel$days), sd_travel_time = sd(travel$days), n = nrow(travel)))

  # Create inp for survival estimation
  inp <- as.data.frame(reshape2::dcast(test3, TagCode ~ river_km, fun.aggregate = length))

  # Sort columns by river km in descending order
  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1

  inp  <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]
  inp  <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)
  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]

  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0]    <- 1

  inp    <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))
  groups_w_detects <- names(table(test3$Release))

  inp[,groups] <- 0

  for(i in groups){
    inp[as.character(inp$Release) == i, i] <- 1
  }

  inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")

  if(length(groups) > 1){
    # make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1)

    WR.ddl <- make.design.data(WR.process)

    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)

    inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
    inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)

    if(length(groups_w_detects) > 1){
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)

    } else {
      WR.process <- process.data(inp.df, model="CJS", begin.time=1)
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    }

    WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- cbind(Release = groups_w_detects, round(WR.mark.rel$results$real[seq(from=1,to=length(groups_w_detects)*2,by = 2),
                                                                                    c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
    WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
    WR.surv <- rbind(WR.surv, WR.surv.rel)

  } else {
    inp.df      <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)
    WR.process  <- process.data(inp.df, model="CJS", begin.time=1) 
    WR.ddl      <- make.design.data(WR.process)
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    WR.surv     <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
  }

  WR.surv$Detection_efficiency <- NA
  WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
  WR.surv1 <- WR.surv

  colnames(WR.surv1)[1] <- "Release"
  WR.surv1 <- merge(WR.surv1, travel_final, by = "Release", all.x = T)
  WR.surv1$mean_travel_time <- round(WR.surv1$mean_travel_time,1)
  WR.surv1$sd_travel_time <- round(WR.surv1$sd_travel_time,1)
  colnames(WR.surv1) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", 
                          "95% upper C.I.", "Detection efficiency (%)", "Mean time to Benicia (days)", "SD of time to Benicia (days)", "Count")
  #colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")

  print(kable(WR.surv1, row.names = F, "html", caption = "3.3 Minimum survival to Benicia Bridge East Span (using CJS survival model), and travel time") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
}
3.3 Minimum survival to Benicia Bridge East Span (using CJS survival model), and travel time
Release Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%) Mean time to Benicia (days) SD of time to Benicia (days) Count
Abv_Buttonbush_Rel 0.0 NA NA NA NA NA NA NA
Abv_Horseshoe_Rel 0.0 NA NA NA NA NA NA NA
Abv_Orange_Blossom_Rel 0.0 NA NA NA NA NA NA NA
ALL 0.8 0.8 0.1 5.3 100 121.9 NA 1
Blw_Honolulu_Bar_Rel 0.0 NA NA NA NA NA NA NA
Blw_Orange_Blossom_Rel 0.0 NA NA NA NA NA NA NA
Blw_Russian_Rapids_Rel 0.0 NA NA NA NA NA NA NA
Goodwin_Dam_Rel 3.7 3.6 0.5 22.1 NA 121.9 NA 1
Honolulu_Bar_Rel 0.0 NA NA NA NA NA NA NA
Lovers_Leap_Rel 0.0 NA NA NA NA NA NA NA
Orange_Blossom_Rel 0.0 NA NA NA NA NA NA NA
Russian_Rapids_Rel 0.0 NA NA NA NA NA NA NA
The_Hole_Rel 0.0 NA NA NA NA NA NA NA
Two_Mile_Bar_Rel 0.0 NA NA NA NA NA NA NA
Valley_Oak_Rel 0.0 NA NA NA NA NA NA NA
Wildcat_Creek_Rel 0.0 NA NA NA NA NA NA NA
if(exists("benicia")==T & is.numeric(WR.surv1[1,2])){
  # Find mean release time per release group, and ALL
  reltimes <- aggregate(list(RelDT = study_tagcodes$release_time), by = list(Release = study_tagcodes$Release), FUN = mean)
  reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$release_time)))

  # Assign whether the results are tentative or final
  quality <- "tentative"
  if(endtime < as.Date(format(Sys.time(), "%Y-%m-%d"))){
    quality <- "final"
  }

  WR.surv       <- merge(WR.surv, reltimes, by = "Release", all.x = T)
  WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = "1970-01-01")
  benicia$RelDT <- as.POSIXct(benicia$RelDT)

  # remove old benicia record for this studyID
  benicia <- benicia[!benicia$StudyID == unique(detects_study$Study_ID),]
  benicia <- rbind(benicia, data.frame(WR.surv, StudyID = unique(detects_study$Study_ID), data_quality = quality))

  write.csv(benicia, "benicia_surv.csv", row.names = F, quote = F) 
}



4. Detections statistics at all realtime receivers


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"

} else {
  arrivals <- detects_study %>%
              group_by(general_location, TagCode) %>%
              summarise(DateTime_PST = min(DateTime_PST)) %>%
              arrange(TagCode)

  tag_stats <- arrivals %>%
               group_by(general_location) %>%
               summarise(First_arrival = min(DateTime_PST),
                         Mean_arrival = mean(DateTime_PST),
                         Last_arrival = max(DateTime_PST),
                         Fish_count = length(unique(TagCode))) %>%
               mutate(Percent_arrived = round(Fish_count/nrow(study_tagcodes) * 100,2)) %>%
               dplyr::left_join(., unique(detects_study[,c("general_location", "river_km")])) %>%
               arrange(desc(river_km)) %>%
               mutate(First_arrival = format(First_arrival, tz = "Etc/GMT+8"),
                      Mean_arrival = format(Mean_arrival, tz = "Etc/GMT+8"),
                      Last_arrival = format(Last_arrival, tz = "Etc/GMT+8")) %>%
               na.omit()

  print(kable(tag_stats, row.names = F,
              caption = "4.1 Detections for all releases combined",
              "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

  count <- 0

  for(j in sort(unique(study_tagcodes$Release))){

    if(nrow(detects_study[detects_study$Release == j,]) > 0){
      count <- count + 1
      arrivals1 <- detects_study %>%
                   filter(Release == j) %>%
                   group_by(general_location, TagCode) %>%
                   summarise(DateTime_PST = min(DateTime_PST)) %>%
                   arrange(TagCode)

      rel_count <- nrow(study_tagcodes[study_tagcodes$Release == j,])

      tag_stats1 <- arrivals1 %>%
                    group_by(general_location) %>%
                    summarise(First_arrival = min(DateTime_PST),
                              Mean_arrival = mean(DateTime_PST),
                              Last_arrival = max(DateTime_PST),
                              Fish_count = length(unique(TagCode))) %>%
                    mutate(Percent_arrived = round(Fish_count/rel_count * 100,2)) %>%
                    dplyr::left_join(., unique(detects_study[,c("general_location", "river_km")])) %>%
                    arrange(desc(river_km)) %>%
                    mutate(First_arrival = format(First_arrival, tz = "Etc/GMT+8"),
                           Mean_arrival = format(Mean_arrival, tz = "Etc/GMT+8"),
                           Last_arrival = format(Last_arrival, tz = "Etc/GMT+8")) %>%
                    na.omit()

      final_stats <- kable(tag_stats1, row.names = F,
            caption = paste("4.2.", count, " Detections for ", j, " release groups", sep = ""),
            "html")
      print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

    } else {
      cat("\n\n\\pagebreak\n")
      print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
      cat("\n\n\\pagebreak\n")
    }
  }
}
4.1 Detections for all releases combined
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Stan_Valley_Oak 2024-12-13 17:22:23 2025-01-01 15:24:29 2025-03-13 02:03:37 11 8.59 262.320
Stan_Caswell 2025-03-15 03:12:55 2025-03-15 03:12:55 2025-03-15 03:12:55 1 0.78 202.476
SJ_Vernalis 2025-03-15 22:54:05 2025-03-15 22:54:05 2025-03-15 22:54:05 1 0.78 189.270
Clifton_Court_US_Radial_Gates 2025-03-17 12:32:19 2025-03-17 12:32:19 2025-03-17 12:32:19 1 0.78 146.000
Clifton_Court_Intake_Canal 2025-03-18 07:25:28 2025-03-18 07:25:28 2025-03-18 07:25:28 1 0.78 142.721
Benicia_east 2025-03-20 13:32:14 2025-03-20 13:32:14 2025-03-20 13:32:14 1 0.78 52.240
Benicia_west 2025-03-20 13:37:52 2025-03-20 13:37:52 2025-03-20 13:37:52 1 0.78 52.040
4.2.1 Detections for Abv_Buttonbush_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Stan_Valley_Oak 2024-12-14 23:19:48 2024-12-14 23:19:48 2024-12-14 23:19:48 1 50 262.32
4.2.2 Detections for Abv_Horseshoe_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
4.2.3 Detections for Abv_Orange_Blossom_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Stan_Valley_Oak 2025-02-13 19:51:33 2025-02-13 19:51:33 2025-02-13 19:51:33 1 12.5 262.32
4.2.4 Detections for Blw_Honolulu_Bar_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Stan_Valley_Oak 2024-12-19 04:36:45 2024-12-19 04:36:45 2024-12-19 04:36:45 1 14.29 262.32
4.2.5 Detections for Blw_Orange_Blossom_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Stan_Valley_Oak 2025-01-13 03:04:06 2025-01-13 03:04:06 2025-01-13 03:04:06 1 14.29 262.32
4.2.6 Detections for Blw_Russian_Rapids_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
4.2.7 Detections for Goodwin_Dam_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Stan_Valley_Oak 2025-03-13 02:03:37 2025-03-13 02:03:37 2025-03-13 02:03:37 1 3.7 262.320
Stan_Caswell 2025-03-15 03:12:55 2025-03-15 03:12:55 2025-03-15 03:12:55 1 3.7 202.476
SJ_Vernalis 2025-03-15 22:54:05 2025-03-15 22:54:05 2025-03-15 22:54:05 1 3.7 189.270
Clifton_Court_US_Radial_Gates 2025-03-17 12:32:19 2025-03-17 12:32:19 2025-03-17 12:32:19 1 3.7 146.000
Clifton_Court_Intake_Canal 2025-03-18 07:25:28 2025-03-18 07:25:28 2025-03-18 07:25:28 1 3.7 142.721
Benicia_east 2025-03-20 13:32:14 2025-03-20 13:32:14 2025-03-20 13:32:14 1 3.7 52.240
Benicia_west 2025-03-20 13:37:52 2025-03-20 13:37:52 2025-03-20 13:37:52 1 3.7 52.040
4.2.8 Detections for Honolulu_Bar_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
4.2.9 Detections for Lovers_Leap_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
4.2.10 Detections for Orange_Blossom_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
4.2.11 Detections for Russian_Rapids_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
4.2.12 Detections for The_Hole_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
4.2.13 Detections for Two_Mile_Bar_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
4.2.14 Detections for Valley_Oak_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Stan_Valley_Oak 2024-12-17 14:59:55 2024-12-17 15:02:15 2024-12-17 15:08:28 5 100 262.32
4.2.15 Detections for Wildcat_Creek_Rel release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
Stan_Valley_Oak 2024-12-13 17:22:23 2024-12-13 17:22:23 2024-12-13 17:22:23 1 10 262.32


library(dplyr)
library(dbplyr)
library(DBI)
library(odbc)
library(data.table)

# Create connection with cloud database
con <- dbConnect(odbc(),
                Driver = "SQL Server",
                Server = "calfishtrack-server.database.windows.net",
                Database = "realtime_detections",
                UID = "realtime_user",
                PWD = "Pass@123",
                Port = 1433)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

# THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"

} else {
  arrivals <- detects_study %>%
              group_by(general_location, TagCode) %>%
              summarise(DateTime_PST = min(DateTime_PST)) %>%
              mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8"))

  # Use dbplyr to load realtime_locs and qryHexCodes sql table
  gen_locs <- tbl(con, "realtime_locs") %>% collect()
  # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)

  beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
                   mutate(day = as.Date(day)) %>%
                   filter(TagCode == beacon) %>% # Now subset to only look at data for the correct beacon for that day
                   filter(day >= as.Date(min(study_tagcodes$release_time)) & 
                          day <= endtime) %>% # Now only keep beacon by day for days since fish were released
                   dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")

  arrivals_per_day <- arrivals %>%
                      group_by(day, general_location) %>%
                      summarise(New_arrivals = length(TagCode)) %>%
                      arrange(general_location) %>% na.omit() %>%
                      mutate(day = as.Date(day)) %>%
                      dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]),
                                       ., by = c("general_location", "day")) %>%
                      arrange(general_location, day) %>%
                      mutate(day = factor(day)) %>%
                      filter(general_location != "Bench_test") %>% # Remove bench test and other NA locations
                      filter(!(is.na(general_location))) %>%
                      arrange(desc(rkm)) %>% # Change order of data to plot decreasing river_km
                      mutate(general_location = factor(general_location, unique(general_location)))

  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))

  crosstab <- xtabs(formula = arrivals_per_day$New_arrivals ~ arrivals_per_day$day + arrivals_per_day$general_location,
                    addNA =T)
  crosstab[is.na(crosstab)] <- ""
  crosstab[crosstab==0] <- NA
  crosstab <- as.data.frame.matrix(crosstab)

  kable(crosstab, align = "c", caption = "4.3 Fish arrivals per day (\"NA\" means receivers were non-operational)") %>%
    kable_styling(c("striped", "condensed"), font_size = 11, full_width = F, position = "left", fixed_thead = TRUE) %>%
    column_spec(column = 1:ncol(crosstab),width_min = "50px",border_left = T, border_right = T) %>%
    column_spec(1, bold = T, width_min = "75px")%>%
    scroll_box(height = "700px")
}
4.3 Fish arrivals per day (“NA” means receivers were non-operational)
Blw_Salt_RT Sac_OrdFerry MeridianBr Stan_Valley_Oak Stan_Caswell SJ_Vernalis TowerBridge I80-50_Br MiddleRiver Clifton_Court_US_Radial_Gates Holland_Cut_Quimby CVP_Tank CVP_Trash_Rack_1 Clifton_Court_Intake_Canal Old_River_Quimby SanJoaquinMcDonald SanJoaquinMcDonald_2 SacRiverWalnutGrove_2 Georg_Sl_1 Sac_BlwGeorgiana Sac_BlwGeorgiana2 Benicia_east Benicia_west
2024-11-18 NA NA NA
2024-11-19 NA NA NA
2024-11-20 NA NA NA
2024-11-21 NA NA NA
2024-11-22 NA NA NA
2024-11-23 NA NA NA
2024-11-24 NA NA NA
2024-11-25 NA NA NA
2024-11-26 NA NA NA
2024-11-27 NA NA NA
2024-11-28 NA NA NA
2024-11-29 NA NA NA
2024-11-30 NA NA NA
2024-12-01 NA NA NA
2024-12-02 NA NA NA
2024-12-03 NA NA NA
2024-12-04 NA NA NA
2024-12-05 NA NA NA
2024-12-06 NA NA NA
2024-12-07 NA NA NA
2024-12-08 NA NA NA
2024-12-09 NA NA NA
2024-12-10 NA NA NA
2024-12-11 NA NA NA
2024-12-12 NA NA NA
2024-12-13 NA 1 NA NA
2024-12-14 NA 1 NA NA
2024-12-15 NA NA NA
2024-12-16 NA NA NA
2024-12-17 NA 5 NA
2024-12-18 NA NA
2024-12-19 NA 1 NA
2024-12-20 NA NA
2024-12-21 NA NA
2024-12-22 NA NA
2024-12-23 NA NA
2024-12-24 NA NA
2024-12-25 NA NA
2024-12-26 NA NA
2024-12-27 NA NA
2024-12-28 NA NA
2024-12-29 NA NA
2024-12-30 NA NA
2024-12-31 NA NA
2025-01-01 NA NA
2025-01-02 NA NA
2025-01-03 NA NA
2025-01-04 NA NA
2025-01-05 NA NA
2025-01-06 NA NA
2025-01-07 NA NA
2025-01-08 NA NA
2025-01-09 NA NA
2025-01-10 NA NA
2025-01-11 NA NA
2025-01-12 NA NA NA
2025-01-13 NA 1 NA
2025-01-14 NA NA
2025-01-15 NA NA
2025-01-16 NA NA
2025-01-17 NA NA
2025-01-18 NA NA
2025-01-19 NA NA
2025-01-20 NA NA
2025-01-21 NA NA
2025-01-22 NA NA
2025-01-23 NA NA
2025-01-24 NA NA
2025-01-25 NA NA
2025-01-26 NA NA NA
2025-01-27 NA NA NA
2025-01-28 NA NA NA
2025-01-29 NA NA NA
2025-01-30
2025-01-31
2025-02-01
2025-02-02
2025-02-03
2025-02-04 NA
2025-02-05 NA
2025-02-06 NA NA
2025-02-07 NA NA
2025-02-08 NA NA
2025-02-09 NA NA
2025-02-10 NA NA
2025-02-11 NA NA
2025-02-12 NA NA
2025-02-13 NA NA 1
2025-02-14 NA NA
2025-02-15 NA NA
2025-02-16 NA NA
2025-02-17 NA NA
2025-02-18 NA NA
2025-02-19 NA NA
2025-02-20 NA NA
2025-02-21 NA NA
2025-02-22 NA NA
2025-02-23 NA NA
2025-02-24 NA NA
2025-02-25 NA NA
2025-02-26 NA NA
2025-02-27 NA NA
2025-02-28 NA NA
2025-03-01 NA NA
2025-03-02 NA NA
2025-03-03 NA NA
2025-03-04 NA NA
2025-03-05 NA NA
2025-03-06 NA NA
2025-03-07 NA NA
2025-03-08 NA NA
2025-03-09 NA NA
2025-03-10 NA NA
2025-03-11 NA NA
2025-03-12 NA NA
2025-03-13 NA NA 1
2025-03-14 NA NA
2025-03-15 NA NA 1 1
2025-03-16 NA NA
2025-03-17 NA NA 1
2025-03-18 NA NA 1
2025-03-19 NA NA
2025-03-20 NA NA 1 1
2025-03-21 NA NA
2025-03-22 NA NA
2025-03-23 NA NA
2025-03-24 NA NA
2025-03-25 NA NA
2025-03-26 NA NA
2025-03-27 NA NA
2025-03-28 NA NA
2025-03-29 NA NA
2025-03-30 NA NA
2025-03-31 NA NA
2025-04-01 NA NA
2025-04-02 NA NA
2025-04-03 NA NA
2025-04-04 NA NA
2025-04-05 NA NA
2025-04-06 NA NA
2025-04-07 NA NA
2025-04-08 NA NA NA
2025-04-09 NA NA NA
2025-04-10 NA NA NA
2025-04-11 NA NA NA
2025-04-12 NA NA NA
2025-04-13 NA NA NA
2025-04-14 NA NA NA
2025-04-15 NA NA NA
2025-04-16 NA NA NA
2025-04-17 NA NA
2025-04-18 NA NA
2025-04-19 NA NA
2025-04-20 NA NA
2025-04-21 NA NA
2025-04-22 NA
2025-04-23 NA
2025-04-24 NA
2025-04-25 NA
rm(list = ls())
cleanup(ask = F)



For questions or comments, please contact