Central Valley Enhanced

Acoustic Tagging Project

logo





Georgiana Slough Barrier Study Late-Fall-run Chinook salmon - February

2023-2024 Season (PROVISIONAL DATA)


Telemetry Study Template for this study can be found here



1. Project Status


Study is complete, all tags are no longer active as of 2024-06-02. All times in Pacific Standard Time.

Study began on 2024-02-14 09:14:00, see tagging details below:
Release First_release_time Last_release_time Number_fish_released Release_location Release_rkm Mean_length Mean_weight
Week 1 2024-02-14 09:14:00 2024-02-17 06:14:00 240 Sacramento_Tower_Br 172 160.7 42.9
ALL 2024-02-14 09:14:00 2024-02-17 06:14:00 240 Sacramento_Tower_Br 172 160.7 42.9



2. Real-time Fish Detections


library(leaflet)
library(maps)
library(htmlwidgets)
library(leaflet.extras)
library(dplyr)
library(dbplyr)
library(DBI)
library(odbc)
library(data.table)

# Create connection with cloud database
con <- dbConnect(odbc(),
                Driver = "SQL Server",
                Server = "calfishtrack-server.database.windows.net",
                Database = "realtime_detections",
                UID = "realtime_user",
                PWD = "Pass@123",
                Port = 1433)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

## THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
   cat("No detections yet")

   # Use dbplyr to load realtime_locs and qryHexCodes sql table
   gen_locs <- tbl(con, "realtime_locs") %>% collect()
   # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F) %>% filter(is.na(stop))

   leaflet(data = gen_locs[is.na(gen_locs$stop),]) %>%
       # setView(-72.14600, 43.82977, zoom = 8) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>% 
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addMarkers(~longitude, ~latitude, label = ~general_location, group = "Receiver Sites", popup = ~location) %>% 
       # addAwesomeMarkers(~lon_dd, ~lat_dd, label = ~locality, group = "Sites", icon=icons) %>%
       addScaleBar(position = "bottomleft") %>%
          addLayersControl(
          baseGroups = c("Street Map", "Satellite", "Relief"),
          overlayGroups = c("Receiver Sites"),
          options = layersControlOptions(collapsed = FALSE)) %>%
          addSearchFeatures(targetGroups = c("Receiver Sites"))
} else {

   # Use dbplyr to load realtime_locs and qryHexCodes sql table
   gen_locs <- tbl(con, "realtime_locs") %>% collect()
   # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)

   endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                  max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))

   beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
      mutate(day = as.Date(day)) %>%
      # Subset to only look at data for the correct beacon for that day
      filter(TagCode == beacon)  %>% 
      # Only keep beacon by day for days since fish were released
      filter(day >= as.Date(min(study_tagcodes$release_time)) & day <= endtime) %>%
      dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")

   arrivals_per_day <- detects_study %>%
      group_by(general_location, TagCode) %>%
      summarise(DateTime_PST = min(DateTime_PST, na.rm = T)) %>%
      arrange(TagCode, general_location) %>%
      mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8")) %>%
      group_by(day, general_location) %>%
      summarise(New_arrivals = length(TagCode)) %>%
      na.omit() %>%
      mutate(day = as.Date(day)) %>%
      dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]), ., 
                       by = c("general_location", "day")) %>%
      arrange(general_location, day) %>%
      mutate(day = as.factor(day)) %>%
      filter(general_location != "Bench_test") %>% # Remove bench test
      filter(!(is.na(general_location))) # Remove NA locations

   ## Remove sites that were not operation the whole time
   #### FOR THE SEASONAL SURVIVAL PAGE, KEEP ALL SITES SINCE PEOPLE WANT TO SEE DETECTIONS OF LATER FISH AT NEWLY 
   #### DEPLOYED SPOTS
   gen_locs_days_in_oper <- arrivals_per_day %>%
      group_by(general_location) %>%
      summarise(days_in_oper = length(day))
   #gen_locs_days_in_oper <- gen_locs_days_in_oper[gen_locs_days_in_oper$days_in_oper ==
   #                                               max(gen_locs_days_in_oper$days_in_oper),]
   arrivals_per_day_in_oper <- arrivals_per_day %>%
      filter(general_location %in% gen_locs_days_in_oper$general_location)

   fish_per_site <- arrivals_per_day_in_oper %>%
      group_by(general_location) %>%
      summarise(fish_count = sum(New_arrivals, na.rm=T))

   gen_locs_mean_coords <- gen_locs %>%
      filter(is.na(stop) & general_location %in% fish_per_site$general_location) %>%
      group_by(general_location) %>%
      summarise(latitude = mean(latitude), # estimate mean lat and lons for each genloc
                longitude = mean(longitude))

   fish_per_site <- merge(fish_per_site, gen_locs_mean_coords)
   release_stats_agg <- aggregate(cbind(Release_lon, Release_lat) ~ Release_location, data = release_stats[release_stats$Release != "ALL",], FUN = mean)
   release_stats_agg <- merge(release_stats_agg, aggregate(Number_fish_released ~ Release_location, data = release_stats[release_stats$Release != "ALL",], FUN = sum))

   if(!is.na(release_stats$Release_lat[1])){
     leaflet(data = fish_per_site) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addPulseMarkers(data = fish_per_site[seq(from = 1, to = nrow(fish_per_site), by = 2),], lng = ~longitude, lat = ~latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, direction = "left", textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addPulseMarkers(data = fish_per_site[seq(from = 2, to = nrow(fish_per_site), by = 2),], lng = ~longitude, lat = ~latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, direction = "right", textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addCircleMarkers(data = release_stats_agg, ~Release_lon, ~Release_lat, label = ~Number_fish_released, stroke = F, color = "blue", fillOpacity = 1, 
                        group = "Release Sites", popup = ~Release_location, labelOptions = labelOptions(noHide = T, textsize = "15px")) %>%
       addScaleBar(position = "bottomleft") %>%
       addLegend("bottomright", labels = c("Receivers", "Release locations"), colors = c("red","blue")) %>%
       addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"), options = layersControlOptions(collapsed = FALSE))
   } else {
     leaflet(data = fish_per_site) %>%
       addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
       addProviderTiles("Esri.WorldImagery", group = "Satellite") %>%
       addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
       # Marker data are from the sites data frame. We need the ~ symbols
       # to indicate the columns of the data frame.
       addPulseMarkers(lng = fish_per_site$longitude, lat = fish_per_site$latitude, label = ~fish_count, 
                       labelOptions = labelOptions(noHide = T, textsize = "15px"), group = "Receiver Sites",
                       popup = ~general_location, icon = makePulseIcon(heartbeat = 1.3)) %>%
       addScaleBar(position = "bottomleft") %>%
       addLayersControl(baseGroups = c("Street Map", "Satellite", "Relief"),
                        options = layersControlOptions(collapsed = FALSE))
   }
}

2.1 Map of unique fish detections at operational realtime detection locations


library(cder)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) > 0){

   detects_study <- detects_study[order(detects_study$TagCode, detects_study$DateTime_PST),]
   ## Now estimate the time in hours between the previous and next detection, for each detection. 
   detects_study$prev_genloc <- shift(detects_study$general_location, fill = NA, type = "lag")
   #detects_study$prev_genloc <- shift(detects_study$General_Location, fill = NA, type = "lag")
   ## Now make NA the time diff values when it's between 2 different tagcodes or genlocs
   detects_study[which(detects_study$TagCode != shift(detects_study$TagCode, fill = NA, type = "lag")), "prev_genloc"] <- NA
   detects_study[which(detects_study$general_location != detects_study$prev_genloc), "prev_genloc"] <- NA
   detects_study$mov_score <- 0
   detects_study[is.na(detects_study$prev_genloc), "mov_score"] <- 1
   detects_study$mov_counter <- cumsum(detects_study$mov_score)

   detects_summary <- aggregate(list(first_detect = detects_study$DateTime_PST), by = list(TagCode = detects_study$TagCode, release_time = detects_study$release_time, mov_counter = detects_study$mov_counter ,general_location = detects_study$general_location, river_km = detects_study$river_km, release_rkm = detects_study$release_rkm), min)

   detects_summary <- detects_summary[is.na(detects_summary$first_detect) == F,]
   releases <- aggregate(list(first_detect = detects_summary$release_time), by = list(TagCode = detects_summary$TagCode, release_time = detects_summary$release_time, release_rkm = detects_summary$release_rkm), min)
   releases$river_km <- releases$release_rkm
   releases$mov_counter <- NA
   releases$general_location <- NA

   detects_summary <- rbindlist(list(detects_summary, releases), use.names = T)
   detects_summary <- detects_summary[order(detects_summary$TagCode, detects_summary$first_detect),]
   #detects_summary <- detects_summary[detects_summary$TagCode != "9759",]

   starttime <- as.Date(min(detects_study$release_time), "Etc/GMT+8")
   ## Endtime should be either now, or end of predicted tag life, whichever comes first
   endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d"))+1, max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))
   #par(mar=c(6, 5, 2, 5) + 0.1)
   
   MLW <- data.frame()
   CLW <- data.frame()
   TIS <- data.frame()
   FRE <- data.frame()
   ## download weir data only if release loc is above at least fremont
   if(max(detects_study$release_rkm) > 209.5){ 
     MLW <- try(cdec_query(stations = c("MLW"), sensors = 20, durations = "H", start.date = starttime, end.date = endtime))
     CLW <- try(cdec_query(stations = c("CLW"), sensors = 20, durations = "H", start.date = starttime, end.date = endtime))
     TIS <- try(cdec_query(stations = c("TIS"), sensors = 20, durations = "H", start.date = starttime, end.date = endtime))
     FRE <- try(cdec_query(stations = c("FRE"), sensors = 20, durations = "H", start.date = starttime, end.date = endtime))
   }
   if(inherits(MLW, "try-error")|
      inherits(CLW, "try-error")|
      inherits(TIS, "try-error")|
      inherits(FRE, "try-error")|
      nrow(MLW)==0|
      nrow(CLW)==0|
      nrow(TIS)==0|
      nrow(FRE)==0){
  
     plot_ly(detects_summary, x = ~first_detect, y = ~river_km, color = ~TagCode, width = 900, height = 600, dynamicTicks = TRUE, connectgaps = TRUE, mode = "lines+markers", type = "scatter",hoverinfo = 'text',
          text = ~paste('</br> TagCode: ', TagCode,
                        '</br> Arrival: ', first_detect,
                        '</br> Location: ', general_location)) %>%
        layout(showlegend = T, 
           xaxis = list(title = "<b> Date <b>", mirror=T,ticks="outside",showline=T, range=c(starttime,endtime)),
           yaxis = list(title = "<b> Kilometers upstream of the Golden Gate <b>", mirror=T,ticks="outside",showline=T, range=c(min(gen_locs[is.na(gen_locs$stop),"rkm"])-10, max(detects_study$release_rkm)+10)),
           legend = list(title=list(text='<b> Tag Code </b>')),
           margin=list(l = 50,r = 100,b = 50,t = 50))
        
   }else{
     MLW[is.na(MLW$Value)==F, "rkm"] <- 326.3
     CLW[is.na(CLW$Value)==F, "rkm"] <- 310.2
     TIS[is.na(TIS$Value)==F, "rkm"] <- 267.7
     FRE[is.na(FRE$Value)==F, "rkm"]<- 209.5 
     MLW[1,"rkm"] <- 1000 ## this ensures it shows up on legend even when weirs aren't overtopping
     CLW[1,"rkm"] <- 1000 ## this ensures it shows up on legend even when weirs aren't overtopping
     TIS[1,"rkm"] <- 1000 ## this ensures it shows up on legend even when weirs aren't overtopping
     FRE[1,"rkm"] <- 1000 ## this ensures it shows up on legend even when weirs aren't overtopping
     
          plot_ly(width = 900, height = 600) %>%
            add_trace(x=~MLW$DateTime, y=~MLW$rkm, type = "scatter", mode = "markers", name = "Moulton spill", marker=list(symbol="square-open", color="red"))  %>%
            add_trace(x=~CLW$DateTime, y=~CLW$rkm, type = "scatter", mode = "markers", name = "Colusa spill", marker=list(symbol="square-open", color="blue"))  %>%
            add_trace(x=~TIS$DateTime, y=~TIS$rkm, type = "scatter", mode = "markers", name = "Tisdale spill", marker=list(symbol="square-open", color="orange"))  %>%
            add_trace(x=~FRE$DateTime, y=~FRE$rkm, type = "scatter", mode = "markers", name = "Fremont spill", marker=list(symbol="square-open", color="green"))  %>%
            add_trace(data=detects_summary, x = ~first_detect, y = ~river_km, color = ~TagCode, dynamicTicks = TRUE, connectgaps = TRUE, mode = "lines+markers", type = "scatter",hoverinfo = 'text',
          text = ~paste('</br> TagCode: ', detects_summary$TagCode,
                        '</br> Arrival: ', detects_summary$first_detect,
                        '</br> Location: ', detects_summary$general_location)) %>%
            layout(showlegend = T, 
           xaxis = list(title = "<b> Date <b>", mirror=T,ticks="outside",showline=T, range=c(starttime,endtime)),
           yaxis = list(title = "<b> Kilometers upstream of the Golden Gate <b>", mirror=T,ticks="outside",showline=T, range=c(min(gen_locs[is.na(gen_locs$stop),"rkm"], na.rm = T)-10, max(detects_study$release_rkm, na.rm = T)+10)),
           legend = list(title=list(text='<b> Weir Spill and Tag Codes </b>')),
           #legend2 = list(title=list(text='<b> Tag Code </b>')),
           margin=list(l = 50,r = 100,b = 50,t = 50))

   }

}else{
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Kilometers upstream of the Golden Gate")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}

2.2 Waterfall Detection Plot


_______________________________________________________________________________________________________

library(tidyr)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_3 <- detects_study %>% filter(general_location == "TowerBridge")

if(nrow(detects_3) == 0){
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  detects_3 <- detects_3 %>%
    dplyr::left_join(., detects_3 %>%
                        group_by(TagCode) %>% 
                        summarise(first_detect = min(DateTime_PST))) %>%
                        mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))

  starttime <- as.Date(min(detects_3$release_time), "Etc/GMT+8")

  # Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  rels            <- unique(study_tagcodes$Release)
  rel_num         <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_3$Release))])

  tagcount1 <- detects_3 %>%
               group_by(Day, Release) %>%
               summarise(unique_tags = length(unique(TagCode))) %>%
               spread(Release, unique_tags)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == "x"] <- paste(i)
    }
  }

  # Download flow data
  flow_day <- readNWISuv(siteNumbers = "11425500", parameterCd="00060", startDate = starttime, 
                         endDate = endtime+1) %>%
                  mutate(Day = as.Date(format(dateTime, "%Y-%m-%d"))) %>%
                  group_by(Day) %>%
                  summarise(parameter_value = mean(X_00060_00000))

  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange2 <- daterange1[,order(colnames(daterange1))] %>%
                dplyr::left_join(., flow_day, by = "Day")
  rownames(daterange2) <- daterange2$Day
  daterange2$Date      <- daterange2$Day
  daterange2$Day       <- NULL
  daterange2_flow      <- daterange2 %>% select(Date, parameter_value)
  daterange3           <- melt(daterange2[,!(names(daterange2) %in% c("parameter_value"))], 
                               id.vars = "Date", variable.name = ".")
  daterange3$.         <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))

  par(mar=c(6, 5, 2, 5) + 0.1)
  ay <- list(
    overlaying = "y",
    nticks = 5,
    color = "#947FFF",
    side = "right",
    title = "Flow (cfs) at Verona",
    automargin = TRUE
  )

  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
          add_bars(x = ~Date, y = ~value, color = ~.) %>%
          add_annotations(text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                          x=0.01, xanchor="left",
                          y=1.056, yanchor="top",    # Same y as legend below
                          legendtitle=TRUE, showarrow=FALSE ) %>%
          add_lines(x=~daterange2_flow$Date, 
                    y=~daterange2_flow$parameter_value, 
                    line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, 
                    inherit=FALSE) %>%
          layout(yaxis2 = ay,showlegend = T, 
          barmode = "stack",
          xaxis = list(title = "Date", mirror=T,ticks="outside",showline=T), 
          yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks="outside",showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50))

}

2.3 Detections at Tower Bridge (downtown Sacramento) versus Sacramento River flows at Verona for duration of tag life


_______________________________________________________________________________________________________

library(tidyr)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_4 <- detects_study %>% filter(general_location == "Benicia_west" | general_location == "Benicia_east")

if(nrow(detects_4) == 0){
   plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
   text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  detects_4 <- detects_4 %>%
    dplyr::left_join(., detects_4 %>%
                        group_by(TagCode) %>% 
                        summarise(first_detect = min(DateTime_PST))) %>%
                        mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))

  starttime <- as.Date(min(detects_4$release_time), "Etc/GMT+8")

  # Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  rels            <- unique(study_tagcodes$Release)
  rel_num         <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_4$Release))])

  tagcount1 <- detects_4 %>%
               group_by(Day, Release) %>%
               summarise(unique_tags = length(unique(TagCode))) %>%
               spread(Release, unique_tags)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == "x"] <- paste(i)
    }
  }

  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
  daterange2 <- daterange1
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL

  par(mar=c(6, 5, 2, 5) + 0.1)

  daterange2$Date <- as.Date(row.names(daterange2))
  daterange3      <- melt(daterange2, id.vars = "Date", variable.name = ".", )
  daterange3$.    <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))

  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
    add_bars(x = ~Date, y = ~value, color = ~.) %>%
    add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                     x=0.01, xanchor="left",
                     y=1.056, yanchor="top",    # Same y as legend below
                     legendtitle=TRUE, showarrow=FALSE ) %>%
    layout(showlegend = T, 
           barmode = "stack",
           xaxis = list(title = "Date", mirror=T,ticks="outside",showline=T), 
           yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks="outside",showline=T),
           legend = list(orientation = "h",x = 0.34, y = 1.066),
           margin=list(l = 50,r = 100,b = 50,t = 50))
}

2.4 Detections at Benicia Bridge for duration of tag life



3. Survival and Routing Probability


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_tower <- detects_study %>% filter(general_location == "TowerBridge")

if(nrow(detects_tower) == 0){
  WR.surv <- data.frame("Release"=NA, "Survival (%)"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA,
                        "95% upper C.I."=NA, "Detection efficiency (%)"=NA)
  colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.",
                         "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS
              survival model). If Yolo Bypass Weirs are overtopping during migration, fish may have taken
              that route, and therefore this is a minimum estimate of survival") %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"),
                  full_width = F, position = "left"))

} else {

  study_count <- nrow(study_tagcodes)

  # Only do survival to Sac for now
  surv <- detects_study %>% filter(river_km > 168 & river_km < 175)

  # calculate mean and SD travel time
  travel <- aggregate(list(first_detect = surv$DateTime_PST), by = list(Release = surv$Release, TagCode = surv$TagCode, RelDT = surv$RelDT), min)
  travel$days <- as.numeric(difftime(travel$first_detect, travel$RelDT, units = "days"))

  travel_final <- aggregate(list(mean_travel_time = travel$days), by = list(Release = travel$Release), mean)
  travel_final <- merge(travel_final, aggregate(list(sd_travel_time = travel$days), by = list(Release = travel$Release), sd))
  travel_final <- merge(travel_final, aggregate(list(n = travel$days), by = list(Release = travel$Release), length))
  travel_final <- rbind(travel_final, data.frame(Release = "ALL", mean_travel_time = mean(travel$days), sd_travel_time = sd(travel$days),n = nrow(travel)))

  # Create inp for survival estimation
  inp <- as.data.frame(reshape2::dcast(surv, TagCode ~ river_km, fun.aggregate = length))

  # Sort columns by river km in descending order
  gen_loc_sites <- ncol(inp)-1 # Count number of genlocs
  if(gen_loc_sites < 2){
    WR.surv <- data.frame("Release"=NA, "Survival (%)"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA,
                          "95% upper C.I."=NA, "Detection efficiency (%)"=NA)
    colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.",
                           "Detection efficiency (%)")
    print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS
                survival model). If Yolo Bypass Weirs are overtopping during migration, fish may
                have taken that route, and therefore this is a minimum estimate of survival") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), 
                        full_width = F,position = "left"))
  } else {
    inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)] %>%
            dplyr::left_join(study_tagcodes, ., by = "TagCode")

    inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)] %>%
            replace(is.na(.), 0) %>%
            replace(., . > 0, 1)

    inp          <- cbind(inp, inp2)
    groups       <- as.character(sort(unique(inp$Release)))
    surv$Release <- factor(surv$Release, levels = groups)
    inp[,groups] <- 0

    for (i in groups) {
      inp[as.character(inp$Release) == i, i] <- 1
    }

    inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")

    if(length(groups) > 1){
      # make sure factor levels have a release that has detections first. if first release in factor order
      # has zero detectins, model goes haywire
      inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1,
      rel = factor(inp$Release, levels = names(sort(table(surv$Release),decreasing = T))),
                   stringsAsFactors = F)

      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")

      WR.ddl <- make.design.data(WR.process)

      WR.mark.all <- mark(WR.process, WR.ddl,
                          model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                          silent = T, output = F)

      WR.mark.rel <- mark(WR.process, WR.ddl,
                          model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)),
                          silent = T, output = F)

      WR.surv <- round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1)
      WR.surv <- rbind(WR.surv, round(WR.mark.rel$results$real[seq(from=1,to=length(groups)*2,by = 2),
                       c("estimate", "se", "lcl", "ucl")] * 100,1))
      WR.surv$Detection_efficiency <- NA
      WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
      WR.surv <- cbind(c("ALL", names(sort(table(surv$Release),decreasing = T))), WR.surv)
    }
    if(length(intersect(colnames(inp),groups)) < 2){
      inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""), " ", 1,sep = "")
      write.table(inp$inp_final,"WRinp.inp",row.names = F, col.names = F, quote = F)
      WRinp <- convert.inp("WRinp.inp")
      WR.process <- process.data(WRinp, model="CJS", begin.time=1)

      WR.ddl <- make.design.data(WR.process)

      WR.mark.all <- mark(WR.process, WR.ddl,
                          model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                          silent = T, output = F)

      WR.mark.rel <- mark(WR.process, WR.ddl,
                          model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                          silent = T, output = F)

      WR.surv <- round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1)
      WR.surv <- rbind(WR.surv, round(WR.mark.rel$results$real[seq(from=1,to=length(groups)*2,by = 2),
                                                               c("estimate", "se", "lcl", "ucl")] * 100,1))
      WR.surv$Detection_efficiency <- NA
      WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
      WR.surv <- cbind(c("ALL", groups), WR.surv)
    }

    colnames(WR.surv)[1] <- "Release"
    WR.surv <- merge(WR.surv, travel_final, by = "Release", all.x = T)
    WR.surv$mean_travel_time <- round(WR.surv$mean_travel_time,1)
    WR.surv$sd_travel_time <- round(WR.surv$sd_travel_time,1)
    colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", 
                           "95% upper C.I.", "Detection efficiency (%)", "Mean time to Tower (days)", "SD of time to Tower (days)","Count")


  WR.surv <- WR.surv %>% arrange(., Release)
  print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS
        survival model), and travel time. If Yolo Bypass Weirs are overtopping during migration, fish may have taken 
        that route, and therefore this is a minimum estimate of survival") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), 
                        full_width = F, position = "left"))
  }
}
3.1 Minimum survival to Tower Bridge (using CJS survival model), and travel time. If Yolo Bypass Weirs are overtopping during migration, fish may have taken that route, and therefore this is a minimum estimate of survival
Release Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%) Mean time to Tower (days) SD of time to Tower (days) Count
ALL 62.5 3.1 56.2 68.4 6 0 0.2 150
Week 1 62.5 3.1 56.2 68.4 NA 0 0.2 150


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

route_results_possible <- FALSE

if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  results_short <- data.frame("Measure"=NA, "Estimate"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA,
                              "95% upper C.I."=NA)
  colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
  print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability
                                                               of entering Georgiana Slough") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"),
                        full_width = F, position = "left"))
} else {

  # Only do survival to Georg split for now
  test2 <- detects_study %>%
           filter(general_location %in% c("TowerBridge", "I80-50_Br","SacRiverWalnutGrove_2", "Sac_BlwGeorgiana",
                                          "Sac_BlwGeorgiana2", "Georg_Sl_1", "Georgiana_Slough2"))

  # We can only do a multi-state model if there is at least one detection in each route
  if(nrow(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2"),]) == 0 |
     nrow(test2[test2$general_location %in% c("Georg_Sl_1", "Georgiana_Slough2"),]) == 0){
    results_short <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA,
                                "95% upper C.I."=NA)
    colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of
                entering Georgiana Slough") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"),
                          full_width = F, position = "left"))
  } else {

    # Make tagcode character
    study_tagcodes$TagCode <- as.character(study_tagcodes$TagCode)

    # Make a crosstab query with frequencies for all tag/location combination
    test2$general_location <- factor(test2$general_location,
                                     levels = c("TowerBridge", "I80-50_Br","SacRiverWalnutGrove_2", "Sac_BlwGeorgiana",
                                                "Sac_BlwGeorgiana2", "Georg_Sl_1", "Georgiana_Slough2"))
    test2$TagCode <- factor(test2$TagCode, levels = study_tagcodes$TagCode)
    mytable <- table(test2$TagCode, test2$general_location) # A will be rows, B will be columns

    # Change all frequencies bigger than 1 to 1. Here you could change your minimum cutoff to 2 detections,
    # and then make another command that changes all detections=1 to 0
    mytable[mytable>0] <- "A"

    # Order in order of rkm
    mytable2 <- mytable[, c("TowerBridge", "I80-50_Br","SacRiverWalnutGrove_2", "Sac_BlwGeorgiana", "Sac_BlwGeorgiana2",
                            "Georg_Sl_1", "Georgiana_Slough2")]

    # Now sort the crosstab rows alphabetically
    mytable2 <- mytable2[order(row.names(mytable2)),]
    mytable2[which(mytable2[, "Sac_BlwGeorgiana"]=="A"), "Sac_BlwGeorgiana"]   <- "A"
    mytable2[which(mytable2[, "Sac_BlwGeorgiana2"]=="A"), "Sac_BlwGeorgiana2"] <- "A"
    mytable2[which(mytable2[, "Georg_Sl_1"]=="A"), "Georg_Sl_1"] <- "B"
    mytable2[which(mytable2[, "Georgiana_Slough2"]=="A"), "Georgiana_Slough2"] <- "B"

    # Now order the study_tagcodes table the same way
    study_tagcodes <- study_tagcodes[order(study_tagcodes$TagCode),]

    # Paste together (concatenate) the data from each column of the crosstab into one string per row, add to tagging_meta.
    # For this step, make sure both are sorted by FishID
    study_tagcodes$inp_part1 <- apply(mytable2[,1:3],1,paste,collapse="")
    study_tagcodes$inp_partA <- apply(mytable2[,4:5],1,paste,collapse="")
    study_tagcodes$inp_partB <- apply(mytable2[,6:7],1,paste,collapse="")

    # find last detection at each genloc
    departure <- aggregate(list(depart = test2$DateTime_PST), by = list(TagCode = test2$TagCode, last_location = test2$general_location), FUN = max)
    # subset for just juncture locations
    departure <- departure[departure$last_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2", "Georg_Sl_1", "Georgiana_Slough2"),]
    # Find genloc of last known detection per tag
    last_depart    <- aggregate(list(depart = departure$depart), by = list(TagCode = departure$TagCode), FUN = max)
    last_depart1   <- merge(last_depart, departure)
    study_tagcodes <- merge(study_tagcodes, last_depart1[,c("TagCode", "last_location")], by = "TagCode", all.x = T)

    # Assume that the Sac is default pathway, and for fish that were detected in neither route, it would get a "00" in inp so does not matter anyway
    study_tagcodes$inp_final <- paste("A",study_tagcodes$inp_part1, study_tagcodes$inp_partA," 1 ;", sep = "")

    # now put in exceptions...fish that were seen in georgiana last
    study_tagcodes[study_tagcodes$last_location %in% c("Georg_Sl_1", "Georgiana_Slough2"), "inp_final"] <-
       paste("A",
             study_tagcodes[study_tagcodes$last_location %in% c("Georg_Sl_1", "Georgiana_Slough2"), "inp_part1"],
             study_tagcodes[study_tagcodes$last_location %in% c("Georg_Sl_1", "Georgiana_Slough2"), "inp_partB"],
             " 1 ;", 
             sep = "")

    # At this point, some fish might not have been deemed to ever take a route based on last visit analysis. If so, model cannot be run
    if(any(grepl(pattern = "A", study_tagcodes$inp_final)==T) & any(grepl(pattern = "B", study_tagcodes$inp_final)==T)){

      write.table(study_tagcodes$inp_final,"WRinp_multistate.inp",row.names = F, col.names = F, quote = F)

      WRinp <- convert.inp("WRinp_multistate.inp")

      dp <- process.data(WRinp, model="Multistrata") 

      ddl <- make.design.data(dp)

      #### p ####
      # Cannott be seen at 2B or 3B or 4B (tower or I80 or walnut grove) and currently second georg is missing so set to 0 as well and to 1 for first line
      ddl$p$fix = NA
      ddl$p$fix[ddl$p$stratum == "B" & ddl$p$time %in% c(2,3,4,6)] = 0
      ddl$p$fix[ddl$p$stratum == "B" & ddl$p$time %in% c(5)] = 1

      #### Psi ####
      # Only 1 transition allowed:
      # from A to B at time interval 4 to 5
      ddl$Psi$fix = 0
      # A to B can only happen for interval 3-4
      ddl$Psi$fix[ddl$Psi$stratum == "A"&
                  ddl$Psi$tostratum == "B" & 
                  ddl$Psi$time == 4] = NA

      #### Phi a.k.a. S ####
      ddl$S$fix = NA
      # None in B for reaches 1,2,3,4 and fixing it to 1 for 5 (between two georg lines). All getting fixed to 1
      ddl$S$fix[ddl$S$stratum == "B" & ddl$S$time %in% c(1,2,3,4,5)] = 1

      # For route A, fixing it to 1 for 5 (between two blw_georg lines)
      ddl$S$fix[ddl$S$stratum == "A" & ddl$S$time == 5] = 1
      # We use -1 at beginning of formula to remove intercept. This is because different routes probably should not share the same intercept

      p.timexstratum   = list(formula=~-1+stratum:time)
      Psi.stratumxtime = list(formula=~-1+stratum:time)
      S.stratumxtime   = list(formula=~-1+stratum:time)

      # Run model a first time
      S.timexstratum.p.timexstratum.Psi.timexstratum = mark(dp, ddl,
                                                            model.parameters = list(S = S.stratumxtime,p = p.timexstratum,Psi = Psi.stratumxtime),
                                                            realvcv = T, silent = T, output = F)

      # Identify any parameter estimates at 1, which would likely have bad SE estimates.
      profile.intervals <- which(S.timexstratum.p.timexstratum.Psi.timexstratum$results$real$estimate %in% c(0,1) &
                                 !S.timexstratum.p.timexstratum.Psi.timexstratum$results$real$fixed == "Fixed")

      # Rerun model using profile interval estimation for the tricky parameters
      S.timexstratum.p.timexstratum.Psi.timexstratum = mark(dp, ddl,
                                                            model.parameters=list(S=S.stratumxtime,p= p.timexstratum,Psi=Psi.stratumxtime),
                                                            realvcv = T, profile.int = profile.intervals, silent = T, output = F)

      results <- S.timexstratum.p.timexstratum.Psi.timexstratum$results$real

      results_short <- results[rownames(results) %in% c("S sA g1 c1 a0 o1 t1",
                                                        "S sA g1 c1 a1 o2 t2",
                                                        "S sA g1 c1 a2 o3 t3",
                                                        "S sA g1 c1 a3 o4 t4",
                                                        "p sA g1 c1 a1 o1 t2",
                                                        "p sA g1 c1 a2 o2 t3",
                                                        "p sA g1 c1 a3 o3 t4",
                                                        "p sA g1 c1 a4 o4 t5",
                                                        #"p sB g1 c1 a4 o4 t5",
                                                        "Psi sA toB g1 c1 a3 o4 t4"),]

      results_short <- round(results_short[,c("estimate", "se", "lcl", "ucl")] * 100,1)

      # Now find estimate and CIs for AtoA route at junction
      Psilist   = get.real(S.timexstratum.p.timexstratum.Psi.timexstratum,"Psi",vcv=TRUE)
      Psivalues = Psilist$estimates

      routes <- TransitionMatrix(Psivalues[Psivalues$time==4 & Psivalues$cohort==1,],vcv.real=Psilist$vcv.real)

      results_short$Measure <- c("Survival from Release to TowerBridge (minimum estimate since fish may have taken Yolo
                                 Bypass)", "Survival from TowerBridge to I80-50_Br", "% arrived from I80-50_Br to Walnut Grove (not survival because
                                 fish may have taken Sutter/Steam)","Survival from Walnut Grove to Georgiana Slough confluence","Detection probability at TowerBridge",
                                 "Detection probability at I80-50_Br", "Detection probability at Walnut Grove", "Detection probability at Blw_Georgiana", 
                                 #"Detection probability at Georgiana Slough (fixed at 1)",
                                 "Routing probability into Georgiana Slough (Conditional on fish arriving to junction)")

      results_short <- results_short[,c("Measure", "estimate", "se", "lcl", "ucl")]
      colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")

      print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of entering Georgiana Slough") %>%
              kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

      route_results_possible <- TRUE

    } else {
      results_short <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
      colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
      print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of entering Georgiana Slough") %>%
              kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
    }
  }
}
3.2 Reach-specific survival and probability of entering Georgiana Slough
Measure Estimate SE 95% lower C.I. 95% upper C.I.
Survival from Release to TowerBridge (minimum estimate since fish may have taken Yolo Bypass) 98.8 4.2 5.8 100.0
Survival from TowerBridge to I80-50_Br 100.0 0.0 92.3 100.0
% arrived from I80-50_Br to Walnut Grove (not survival because fish may have taken Sutter/Steam) 55.6 4.0 47.7 63.3
Survival from Walnut Grove to Georgiana Slough confluence 100.0 0.0 100.0 100.0
Detection probability at TowerBridge 3.8 1.3 2.0 7.2
Detection probability at I80-50_Br 63.2 4.1 54.9 70.9
Detection probability at Walnut Grove 99.2 0.8 94.8 99.9
Detection probability at Blw_Georgiana 100.0 0.0 100.0 100.0
Routing probability into Georgiana Slough (Conditional on fish arriving to junction) 15.2 3.1 10.0 22.3
# If you do not have access to local files, uncomment and run next lines of code
#download.file("https://raw.githubusercontent.com/CalFishTrack/real-time/master/data/georg.png",destfile = "georg.png", quiet = T, mode = "wb")

georg <- readPNG("georg.png")
par(mar = c(2,0,0,0))
# Set up the plot area
plot(1:2, type="n", xlab="", ylab="", xaxt = "n", yaxt = "n")

# Get the plot information so the image will fill the plot box, and draw it
lim <- par()
rasterImage(georg, lim$usr[1], lim$usr[3], lim$usr[2], lim$usr[4])
if(nrow(detects_study[is.na(detects_study$DateTime_PST) == F,]) == 0){
    legend(x = 1.55,y = 1.6,legend =  "No detections yet",col = "white", box.col = "light gray", bg = "light gray") 
    legend(x = 1.55,y = 1.45,legend =  "No detections yet",col = "white", box.col = "light gray", bg = "light gray")

} else if (route_results_possible == F){
    legend(x = 1.55,y = 1.6,legend =  "Too few detections",col = "white", box.col = "light gray", bg = "light gray") 
    legend(x = 1.55,y = 1.45,legend =  "Too few detections",col = "white", box.col = "light gray", bg = "light gray")

} else {
  legend(x = 1.55,y = 1.6,legend =  paste(round(routes$TransitionMat["A","A"],3)*100,
                                          "% (", round(routes$lcl.TransitionMat["A","A"],3)*100, "-",
                                          round(routes$ucl.TransitionMat["A","A"],3)*100,")", sep =""),
         col = "white", box.col = "light gray", bg = "light gray")
  legend(1.55,1.45, legend =  paste(round(routes$TransitionMat["A","B"],3)*100, 
                                    "% (", round(routes$lcl.TransitionMat["A","B"],3)*100, "-",
                                    round(routes$ucl.TransitionMat["A","B"],3)*100,")", sep =""),
         box.col = "light gray", bg = "light gray")
}

mtext(text = "3.3 Routing Probabilities at Georgiana Slough Junction (with 95% C.I.s)", cex = 1.3, side = 1, line = 0.2, adj = 0)

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  plot(1:2, type = "n",xaxt = "n", yaxt = "n",
       xlab = "Range of days study fish were present at Georgiana Sl Junction",
       ylab = "Routing probability into Georgiana Slough at the junction")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)

} else if(route_results_possible == F){
  plot(1:2, type = "n",xaxt = "n", yaxt = "n",
       xlab = "Range of days study fish were present at Georgiana Sl Junction",
       ylab = "Routing probability into Georgiana Slough at the junction")
  text(1.5,1.5, labels = "TOO FEW DETECTIONS", cex = 2)

} else {
  library(repmis)
  trytest <- try(source_data("https://code.usgs.gov/crrl_qfes/Enhanced_Acoustic_Telemetry_Project/raw/master/EAT_data_2023.Rdata?raw=True"))

  if (inherits(trytest, "try-error")){
    plot(1:2, type = "n",xaxt = "n", yaxt = "n",
         xlab = "Range of days study fish were present at Georgiana Sl Junction",
         ylab = "Routing probability into Georgiana Slough at the junction")
    text(1.5,1.5, labels = "ERROR DOWNLOADING STARS", cex = 2)

  } else {
    detects_5 <- detects_study %>% filter(general_location == "SacRiverWalnutGrove_2")
    detects_5 <- detects_5 %>%
                    dplyr::left_join(., detects_5 %>%
                        group_by(TagCode) %>% 
                        summarise(first_detect = min(DateTime_PST))) %>%
                        mutate(Day = as.Date(as.Date(first_detect, "Etc/GMT+8")))
    tagcount5 <- detects_5 %>%
               group_by(Day) %>%
               summarise(unique_tags = length(unique(TagCode)))
    tagcount5$density <- tagcount5$unique_tags / sum(tagcount5$unique_tags)
    # first, find min and max arrivals at georg for a study
    test2 <- as.data.frame(test2)
    min_georg <- as.Date(format(min(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2","Georg_Sl_1",
                                                                        "Georgiana_Slough2"),"DateTime_PST"]), "%Y-%m-%d"))
    max_georg <- as.Date(format(max(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2","Georg_Sl_1",
                                                                        "Georgiana_Slough2"),"DateTime_PST"]), "%Y-%m-%d"))

    psi_study <- psi_GeoCond[psi_GeoCond$Date <= max_georg & psi_GeoCond$Date >=min_georg-1,]

    # plot(psi_study$Date, psi_study$psi_geo.50, ylim = c(0,1), xlim = c(min_georg, max_georg), type = "n", xaxt = "n",
    #      xlab = "Range of days study fish were present at Georgiana Sl Junction",
    #      ylab = "Routing probability into Georgiana Slough at the junction")
    # polygon(c(psi_study$Date, rev(psi_study$Date)),
    #         c(psi_study$psi_geo.10,rev(psi_study$psi_geo.90)), density = 200, col ="grey90")
    # lines(psi_study$Date, psi_study$psi_geo.50, lty = 3)
    # points(mean(psi_study$Date), tail(results_short$Estimate,1)/100, pch = 16, cex = 1.3)
    # arrows(mean(psi_study$Date), tail(results_short$`95% lower C.I.`,1)/100,
    #        mean(psi_study$Date), tail(results_short$`95% upper C.I.`,1)/100, length=0.05, angle=90, code=3)
    # axis(side=1, at=psi_study$Date, labels=format(psi_study$Date, "%b-%d"))
    # legend("topright", legend = c("STARS daily predictions during study (w/ 90% CI)", "Empirical estimate over study period (w/ 95% CI)"),
    #        bty     = "n",
    #        col     = c("black","black"),
    #        lty     = c(3,1),
    #        fill    = c("grey90", NA),
    #        border  = c(NA,NA),
    #        pch     = c(NA,16),
    #        seg.len = 0.8,
    #        cex     = 1.2
    # )
    ggplot()+
      geom_bar(data = tagcount5, aes(x = Day, y = density), alpha = 0.4, stat = "identity", fill = "red") +
      geom_ribbon(data = psi_study, aes(x=Date, ymin = psi_geo.10, ymax = psi_geo.90), alpha = 0.3) +
      geom_line(data = psi_study, aes(x=Date, y=psi_geo.50), size = 1.2) +
      geom_point(aes(x = median(rep(tagcount5$Day, tagcount5$unique_tags)), y = tail(results_short$Estimate,1)/100), size = 4)+
      geom_errorbar(width = 0.2, size = 1.2, aes(ymin = tail(results_short$`95% lower C.I.`,1)/100, ymax = tail(results_short$`95% upper C.I.`,1)/100, x = median(rep(tagcount5$Day, tagcount5$unique_tags))))+
      xlim(c(min_georg, max_georg))+
      xlab("Range of days study fish were present at Georgiana Sl Junction") +
      geom_hline(yintercept=0, linetype="dashed") +
      geom_segment(aes(x=median(rep(tagcount5$Day, tagcount5$unique_tags)),y =-0.01,xend=median(rep(tagcount5$Day, tagcount5$unique_tags)),yend =0.01)) +
      geom_text(aes(x=median(rep(tagcount5$Day, tagcount5$unique_tags)),y =-0.02, label = "median"), color = "red")+
      scale_y_continuous(name = "Routing probability into Georgiana Slough at the junction",limits = c(-0.02,1), sec.axis = dup_axis(name="Histogram of arrivals to junction")) +
      theme_bw()+
      theme(axis.text.y.right = element_text(color = "red"), axis.title.y.right = element_text(color = "red"))

  }
}
3.4 STARS prediction (ribbon) vs. empirical (point) estimate of Routing Probability at Georgiana Slough Junction

3.4 STARS prediction (ribbon) vs. empirical (point) estimate of Routing Probability at Georgiana Slough Junction


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

try(Delta <- read.csv("Delta_surv.csv", stringsAsFactors = F))

if(nrow(detects_study[is.na(detects_study$DateTime_PST) == F,]) == 0){
    WR.surv1 <- data.frame("Measure"=NA, "Estimate"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
    colnames(WR.surv1) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(WR.surv1, row.names = F, "html", caption = "3.5 Minimum through-Delta survival: City of Sacramento to Benicia (using CJS survival model)") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

} else {
  test4 <- detects_study[detects_study$general_location %in% c("TowerBridge", "I80-50_Br", "Benicia_west", "Benicia_east"),]

  if(nrow(test4[test4$general_location =="Benicia_west",]) == 0 | nrow(test4[test4$general_location =="Benicia_east",]) == 0){
    WR.surv1 <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
    colnames(WR.surv1) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(WR.surv1, row.names = F, "html", caption = "3.5 Minimum through-Delta survival: City of Sacramento to Benicia (using CJS survival model)") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

  } else {

  # calculate mean and SD travel time
  sac <- test4[test4$general_location %in% c("TowerBridge", "I80-50_Br"),]
  ben <- test4[test4$general_location %in% c("Benicia_west", "Benicia_east"),]
  travel_sac <- aggregate(list(first_detect_sac = sac$DateTime_PST), by = list(Release = sac$Release, TagCode = sac$TagCode), min)
  travel_ben <- aggregate(list(first_detect_ben = ben$DateTime_PST), by = list(Release = ben$Release, TagCode = ben$TagCode), min)
  travel <- merge(travel_sac, travel_ben, by = c("Release","TagCode"))
  travel$days <- as.numeric(difftime(travel$first_detect_ben, travel$first_detect_sac, units = "days"))

  travel_final <- aggregate(list(mean_travel_time = travel$days), by = list(Release = travel$Release), mean)
  travel_final <- merge(travel_final, aggregate(list(sd_travel_time = travel$days), by = list(Release = travel$Release), sd))
  travel_final <- merge(travel_final, aggregate(list(n = travel$days), by = list(Release = travel$Release), length))
  travel_final <- rbind(travel_final, data.frame(Release = "ALL", mean_travel_time = mean(travel$days), sd_travel_time = sd(travel$days), n = nrow(travel)))

  inp <- as.data.frame(reshape2::dcast(test4, TagCode ~ general_location, fun.aggregate = length))

  # add together detections at Tower and I80 to ensure good detection entering Delta
  if("I80-50_Br" %in% colnames(inp) & "TowerBridge" %in% colnames(inp)){
  inp$`I80-50_Br` <- inp$`I80-50_Br` + inp$TowerBridge

  } else if("TowerBridge" %in% colnames(inp)){
    inp$`I80-50_Br` <- inp$TowerBridge
  }

  # Sort columns by river km in descending order, this also removes TowerBridge, no longer needed
  inp <- inp[,c("TagCode","I80-50_Br", "Benicia_east", "Benicia_west")]

  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1

  inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]
  inp <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)

  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]
  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0] <- 1

  inp <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))
  groups_w_detects <- names(table(detects_study[which(detects_study$river_km < 53),"Release"]))
  inp[,groups] <- 0

  for(i in groups){
    inp[as.character(inp$Release) == i, i] <- 1
  }

  inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")

  if(length(groups) > 1){
    # make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 

    WR.ddl <- make.design.data(WR.process)

    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                        silent = T, output = F)

    inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
    inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)

    if(length(groups_w_detects) > 1){
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")

      WR.ddl <- make.design.data(WR.process)

      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)),
                          silent = T, output = F)

    } else {
      WR.process <- process.data(inp.df, model="CJS", begin.time=1) 

      WR.ddl <- make.design.data(WR.process)

      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                          silent = T, output = F)
    }

    WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[2,c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- cbind(Release = groups_w_detects,
                         round(WR.mark.rel$results$real[seq(from=2,to=length(groups_w_detects)*3,by = 3),
                                                        c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
    WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
    WR.surv <- rbind(WR.surv, WR.surv.rel)

  } else {
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 

    WR.ddl <- make.design.data(WR.process)

    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)),
                        silent = T, output = F)
    WR.surv <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[2,c("estimate", "se", "lcl", "ucl")] * 100,1))
  }

  WR.surv1 <- WR.surv

  colnames(WR.surv1)[1] <- "Release"
  WR.surv1 <- merge(WR.surv1, travel_final, by = "Release", all.x = T)
  WR.surv1$mean_travel_time <- round(WR.surv1$mean_travel_time,1)
  WR.surv1$sd_travel_time <- round(WR.surv1$sd_travel_time,1)
  colnames(WR.surv1) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", 
                          "95% upper C.I.", "Mean Delta passage (days)", "SD of Delta Passage (days)","Count")
  #colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.2 Minimum through-Delta survival, and travel time: City of Sacramento to Benicia (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

  if(exists("Delta")==T & is.numeric(WR.surv1[1,2])){
    reltimes <- aggregate(list(RelDT = study_tagcodes$release_time), by = list(Release = study_tagcodes$Release), FUN = mean)
    reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$release_time)))

    # Assign whether the results are tentative or final
    quality <- "tentative"
    if(endtime < as.Date(format(Sys.time(), "%Y-%m-%d"))){
      quality <- "final"}

      WR.surv <- merge(WR.surv, reltimes, by = "Release", all.x = T)

      WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = "1970-01-01")

      Delta$RelDT <- as.POSIXct(Delta$RelDT)

      # remove old benicia record for this studyID
      Delta <- Delta[!Delta$StudyID %in% unique(detects_study$Study_ID),]
      Delta <- rbind(Delta, data.frame(WR.surv, StudyID = unique(detects_study$Study_ID), data_quality = quality))

      write.csv(Delta, "Delta_surv.csv", row.names = F, quote = F) 
    }
  }
}
3.2 Minimum through-Delta survival, and travel time: City of Sacramento to Benicia (using CJS survival model)
Release Survival (%) SE 95% lower C.I. 95% upper C.I. Mean Delta passage (days) SD of Delta Passage (days) Count
ALL 25.4 3.6 19.1 33 6.8 5.9 38
Week 1 25.4 3.6 19.1 33 6.8 5.9 38


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

try(benicia <- read.csv("benicia_surv.csv", stringsAsFactors = F))

detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]
endtime         <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life))))

if(nrow(detects_benicia) == 0){
  if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
    WR.surv <- data.frame("Release"="ALL", "estimate"=0, "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)

  } else {
    WR.surv <- data.frame("Release"=NA, "estimate"="NO DETECTIONS YET", "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
  }

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.6 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

} else if(length(table(detects_benicia$general_location)) == 1){
  if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
    WR.surv <- data.frame("Release"="ALL", "estimate"=round(length(unique(detects_benicia$TagCode))/length(unique(detects_study$TagCode))*100,1),
                          "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)

  } else {
    WR.surv <- data.frame("Release" = NA, "estimate" = "NOT ENOUGH DETECTIONS", "se" = NA, "lcl" = NA, "ucl" = NA, "Detection_efficiency" = NA)
  }

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.6 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
         kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

} else {
  # Only do survival to Benicia here
  test3 <- detects_study[which(detects_study$river_km < 53),]

  # calculate mean and SD travel time
  travel <- aggregate(list(first_detect = test3$DateTime_PST), by = list(Release = test3$Release, TagCode = test3$TagCode, RelDT = test3$RelDT), min)
  travel$days <- as.numeric(difftime(travel$first_detect, travel$RelDT, units = "days"))

  travel_final <- aggregate(list(mean_travel_time = travel$days), by = list(Release = travel$Release), mean)
  travel_final <- merge(travel_final, aggregate(list(sd_travel_time = travel$days), by = list(Release = travel$Release), sd))
  travel_final <- merge(travel_final, aggregate(list(n = travel$days), by = list(Release = travel$Release), length))
  travel_final <- rbind(travel_final, data.frame(Release = "ALL", mean_travel_time = mean(travel$days), sd_travel_time = sd(travel$days), n = nrow(travel)))

  # Create inp for survival estimation
  inp <- as.data.frame(reshape2::dcast(test3, TagCode ~ river_km, fun.aggregate = length))

  # Sort columns by river km in descending order
  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1

  inp  <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]
  inp  <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)
  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]

  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0]    <- 1

  inp    <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))
  groups_w_detects <- names(table(test3$Release))

  inp[,groups] <- 0

  for(i in groups){
    inp[as.character(inp$Release) == i, i] <- 1
  }

  inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")

  if(length(groups) > 1){
    # make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1)

    WR.ddl <- make.design.data(WR.process)

    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)

    inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
    inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)

    if(length(groups_w_detects) > 1){
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)

    } else {
      WR.process <- process.data(inp.df, model="CJS", begin.time=1)
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    }

    WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- cbind(Release = groups_w_detects, round(WR.mark.rel$results$real[seq(from=1,to=length(groups_w_detects)*2,by = 2),
                                                                                    c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
    WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
    WR.surv <- rbind(WR.surv, WR.surv.rel)

  } else {
    inp.df      <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)
    WR.process  <- process.data(inp.df, model="CJS", begin.time=1) 
    WR.ddl      <- make.design.data(WR.process)
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    WR.surv     <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
  }

  WR.surv$Detection_efficiency <- NA
  WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
  WR.surv1 <- WR.surv

  colnames(WR.surv1)[1] <- "Release"
  WR.surv1 <- merge(WR.surv1, travel_final, by = "Release", all.x = T)
  WR.surv1$mean_travel_time <- round(WR.surv1$mean_travel_time,1)
  WR.surv1$sd_travel_time <- round(WR.surv1$sd_travel_time,1)
  colnames(WR.surv1) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", 
                          "95% upper C.I.", "Detection efficiency (%)", "Mean time to Benicia (days)", "SD of time to Benicia (days)", "Count")
  #colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")

  print(kable(WR.surv1, row.names = F, "html", caption = "3.3 Minimum survival to Benicia Bridge East Span (using CJS survival model), and travel time") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
}
3.3 Minimum survival to Benicia Bridge East Span (using CJS survival model), and travel time
Release Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%) Mean time to Benicia (days) SD of time to Benicia (days) Count
ALL 24.6 2.8 19.6 30.5 98.1 6.5 4.8 59
Week 1 24.6 2.8 19.6 30.5 NA 6.5 4.8 59
if(exists("benicia")==T & is.numeric(WR.surv1[1,2])){
  # Find mean release time per release group, and ALL
  reltimes <- aggregate(list(RelDT = study_tagcodes$release_time), by = list(Release = study_tagcodes$Release), FUN = mean)
  reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$release_time)))

  # Assign whether the results are tentative or final
  quality <- "tentative"
  if(endtime < as.Date(format(Sys.time(), "%Y-%m-%d"))){
    quality <- "final"
  }

  WR.surv       <- merge(WR.surv, reltimes, by = "Release", all.x = T)
  WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = "1970-01-01")
  benicia$RelDT <- as.POSIXct(benicia$RelDT)

  # remove old benicia record for this studyID
  benicia <- benicia[!benicia$StudyID == unique(detects_study$Study_ID),]
  benicia <- rbind(benicia, data.frame(WR.surv, StudyID = unique(detects_study$Study_ID), data_quality = quality))

  write.csv(benicia, "benicia_surv.csv", row.names = F, quote = F) 
}



4. Detections statistics at all realtime receivers


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"

} else {
  arrivals <- detects_study %>%
              group_by(general_location, TagCode) %>%
              summarise(DateTime_PST = min(DateTime_PST)) %>%
              arrange(TagCode)

  tag_stats <- arrivals %>%
               group_by(general_location) %>%
               summarise(First_arrival = min(DateTime_PST),
                         Mean_arrival = mean(DateTime_PST),
                         Last_arrival = max(DateTime_PST),
                         Fish_count = length(unique(TagCode))) %>%
               mutate(Percent_arrived = round(Fish_count/nrow(study_tagcodes) * 100,2)) %>%
               dplyr::left_join(., unique(detects_study[,c("general_location", "river_km")])) %>%
               arrange(desc(river_km)) %>%
               mutate(First_arrival = format(First_arrival, tz = "Etc/GMT+8"),
                      Mean_arrival = format(Mean_arrival, tz = "Etc/GMT+8"),
                      Last_arrival = format(Last_arrival, tz = "Etc/GMT+8")) %>%
               na.omit()

  print(kable(tag_stats, row.names = F,
              caption = "4.1 Detections for all releases combined",
              "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

  count <- 0

  for(j in sort(unique(study_tagcodes$Release))){

    if(nrow(detects_study[detects_study$Release == j,]) > 0){
      count <- count + 1
      arrivals1 <- detects_study %>%
                   filter(Release == j) %>%
                   group_by(general_location, TagCode) %>%
                   summarise(DateTime_PST = min(DateTime_PST)) %>%
                   arrange(TagCode)

      rel_count <- nrow(study_tagcodes[study_tagcodes$Release == j,])

      tag_stats1 <- arrivals1 %>%
                    group_by(general_location) %>%
                    summarise(First_arrival = min(DateTime_PST),
                              Mean_arrival = mean(DateTime_PST),
                              Last_arrival = max(DateTime_PST),
                              Fish_count = length(unique(TagCode))) %>%
                    mutate(Percent_arrived = round(Fish_count/rel_count * 100,2)) %>%
                    dplyr::left_join(., unique(detects_study[,c("general_location", "river_km")])) %>%
                    arrange(desc(river_km)) %>%
                    mutate(First_arrival = format(First_arrival, tz = "Etc/GMT+8"),
                           Mean_arrival = format(Mean_arrival, tz = "Etc/GMT+8"),
                           Last_arrival = format(Last_arrival, tz = "Etc/GMT+8")) %>%
                    na.omit()

      final_stats <- kable(tag_stats1, row.names = F,
            caption = paste("4.2.", count, " Detections for ", j, " release groups", sep = ""),
            "html")
      print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

    } else {
      cat("\n\n\\pagebreak\n")
      print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
      cat("\n\n\\pagebreak\n")
    }
  }
}
4.1 Detections for all releases combined
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
TowerBridge 2024-02-14 15:13:14 2024-02-14 15:13:21 2024-02-14 15:13:30 9 3.75 172.000
I80-50_Br 2024-02-14 09:32:43 2024-02-15 18:04:30 2024-02-18 01:31:38 150 62.50 170.748
MiddleRiver 2024-02-19 08:44:41 2024-02-20 06:22:46 2024-02-20 19:41:54 3 1.25 150.000
Clifton_Court_US_Radial_Gates 2024-02-19 17:01:37 2024-02-22 12:15:24 2024-02-25 07:29:12 2 0.83 146.000
Holland_Cut_Quimby 2024-02-22 19:13:39 2024-02-22 19:13:39 2024-02-22 19:13:39 1 0.42 145.000
Old_River_Quimby 2024-02-21 05:13:57 2024-02-21 05:13:57 2024-02-21 05:13:57 1 0.42 141.000
SacRiverWalnutGrove_2 2024-02-14 22:51:07 2024-02-16 14:08:54 2024-02-18 06:31:51 131 54.58 120.300
Georg_Sl_1 2024-02-15 02:43:02 2024-02-16 20:27:51 2024-02-18 13:15:14 20 8.33 119.600
Sac_BlwGeorgiana 2024-02-14 23:09:45 2024-02-16 13:30:54 2024-02-18 03:29:25 112 46.67 119.058
Sac_BlwGeorgiana2 2024-02-14 23:22:46 2024-02-16 13:54:54 2024-02-18 03:39:47 111 46.25 118.398
Benicia_east 2024-02-18 18:20:25 2024-02-22 03:55:18 2024-03-24 16:32:30 58 24.17 52.240
Benicia_west 2024-02-19 12:58:37 2024-02-22 06:21:35 2024-03-24 16:35:22 53 22.08 52.040
4.2.1 Detections for Week 1 release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived river_km
TowerBridge 2024-02-14 15:13:14 2024-02-14 15:13:21 2024-02-14 15:13:30 9 3.75 172.000
I80-50_Br 2024-02-14 09:32:43 2024-02-15 18:04:30 2024-02-18 01:31:38 150 62.50 170.748
MiddleRiver 2024-02-19 08:44:41 2024-02-20 06:22:46 2024-02-20 19:41:54 3 1.25 150.000
Clifton_Court_US_Radial_Gates 2024-02-19 17:01:37 2024-02-22 12:15:24 2024-02-25 07:29:12 2 0.83 146.000
Holland_Cut_Quimby 2024-02-22 19:13:39 2024-02-22 19:13:39 2024-02-22 19:13:39 1 0.42 145.000
Old_River_Quimby 2024-02-21 05:13:57 2024-02-21 05:13:57 2024-02-21 05:13:57 1 0.42 141.000
SacRiverWalnutGrove_2 2024-02-14 22:51:07 2024-02-16 14:08:54 2024-02-18 06:31:51 131 54.58 120.300
Georg_Sl_1 2024-02-15 02:43:02 2024-02-16 20:27:51 2024-02-18 13:15:14 20 8.33 119.600
Sac_BlwGeorgiana 2024-02-14 23:09:45 2024-02-16 13:30:54 2024-02-18 03:29:25 112 46.67 119.058
Sac_BlwGeorgiana2 2024-02-14 23:22:46 2024-02-16 13:54:54 2024-02-18 03:39:47 111 46.25 118.398
Benicia_east 2024-02-18 18:20:25 2024-02-22 03:55:18 2024-03-24 16:32:30 58 24.17 52.240
Benicia_west 2024-02-19 12:58:37 2024-02-22 06:21:35 2024-03-24 16:35:22 53 22.08 52.040


library(dplyr)
library(dbplyr)
library(DBI)
library(odbc)
library(data.table)

# Create connection with cloud database
con <- dbConnect(odbc(),
                Driver = "SQL Server",
                Server = "calfishtrack-server.database.windows.net",
                Database = "realtime_detections",
                UID = "realtime_user",
                PWD = "Pass@123",
                Port = 1433)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

# THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if(nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"

} else {
  arrivals <- detects_study %>%
              group_by(general_location, TagCode) %>%
              summarise(DateTime_PST = min(DateTime_PST)) %>%
              mutate(day = as.Date(DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8"))

  # Use dbplyr to load realtime_locs and qryHexCodes sql table
  gen_locs <- tbl(con, "realtime_locs") %>% collect()
  # gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)

  beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F) %>%
                   mutate(day = as.Date(day)) %>%
                   filter(TagCode == beacon) %>% # Now subset to only look at data for the correct beacon for that day
                   filter(day >= as.Date(min(study_tagcodes$release_time)) & 
                          day <= endtime) %>% # Now only keep beacon by day for days since fish were released
                   dplyr::left_join(., gen_locs[,c("location", "general_location","rkm")], by = "location")

  arrivals_per_day <- arrivals %>%
                      group_by(day, general_location) %>%
                      summarise(New_arrivals = length(TagCode)) %>%
                      arrange(general_location) %>% na.omit() %>%
                      mutate(day = as.Date(day)) %>%
                      dplyr::left_join(unique(beacon_by_day[,c("general_location", "day", "rkm")]),
                                       ., by = c("general_location", "day")) %>%
                      arrange(general_location, day) %>%
                      mutate(day = factor(day)) %>%
                      filter(general_location != "Bench_test") %>% # Remove bench test and other NA locations
                      filter(!(is.na(general_location))) %>%
                      arrange(desc(rkm)) %>% # Change order of data to plot decreasing river_km
                      mutate(general_location = factor(general_location, unique(general_location)))

  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")),
                 max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))

  crosstab <- xtabs(formula = arrivals_per_day$New_arrivals ~ arrivals_per_day$day + arrivals_per_day$general_location,
                    addNA =T)
  crosstab[is.na(crosstab)] <- ""
  crosstab[crosstab==0] <- NA
  crosstab <- as.data.frame.matrix(crosstab)

  kable(crosstab, align = "c", caption = "4.3 Fish arrivals per day (\"NA\" means receivers were non-operational)") %>%
    kable_styling(c("striped", "condensed"), font_size = 11, full_width = F, position = "left", fixed_thead = TRUE) %>%
    column_spec(column = 1:ncol(crosstab),width_min = "50px",border_left = T, border_right = T) %>%
    column_spec(1, bold = T, width_min = "75px")%>%
    scroll_box(height = "700px")
}
4.3 Fish arrivals per day (“NA” means receivers were non-operational)
Blw_Salt_RT MeridianBr Stan_Valley_Oak TowerBridge I80-50_Br MiddleRiver Clifton_Court_US_Radial_Gates Holland_Cut_Quimby CVP_Tank CVP_Trash_Rack_1 Clifton_Court_Intake_Canal Old_River_Quimby SacRiverWalnutGrove_2 Georg_Sl_1 Sac_BlwGeorgiana Sac_BlwGeorgiana2 Benicia_east Benicia_west
2024-02-14 9 37 3 2 2
2024-02-15 53 37 4 33 32
2024-02-16 46 44 7 39 39
2024-02-17 13 44 7 37 37
2024-02-18 1 3 2 1 1 1
2024-02-19 1 1 8 7
2024-02-20 2 19 19
2024-02-21 1 15 13
2024-02-22 1 6 5
2024-02-23 4 4
2024-02-24 2 2
2024-02-25 1
2024-02-26 1 1
2024-02-27
2024-02-28
2024-02-29
2024-03-01
2024-03-02 1 1
2024-03-03
2024-03-04
2024-03-05
2024-03-06
2024-03-07
2024-03-08
2024-03-09
2024-03-10
2024-03-11
2024-03-12
2024-03-13
2024-03-14
2024-03-15
2024-03-16
2024-03-17
2024-03-18
2024-03-19
2024-03-20
2024-03-21
2024-03-22
2024-03-23
2024-03-24 1 1
2024-03-25
2024-03-26
2024-03-27
2024-03-28
2024-03-29
2024-03-30
2024-03-31
2024-04-01
2024-04-02
2024-04-03
2024-04-04
2024-04-05
2024-04-06
2024-04-07
2024-04-08
2024-04-09
2024-04-10
2024-04-11
2024-04-12
2024-04-13
2024-04-14
2024-04-15
2024-04-16
2024-04-17
2024-04-18
2024-04-19
2024-04-20
2024-04-21
2024-04-22
2024-04-23
2024-04-24
2024-04-25
2024-04-26
2024-04-27
2024-04-28
rm(list = ls())
cleanup(ask = F)



For questions or comments, please contact