Central Valley Enhanced

Acoustic Tagging Project

logo





Hatchery-origin San Joaquin spring-run Chinook salmon

2019-2020 Season (PROVISIONAL DATA)



1. Project Status


Study is complete, all tags are no longer active. All times in Pacific Standard Time.


Telemetry Study Template for this study can be found here

setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

tagcodes <- as.data.frame(fread("qry_HexCodes.txt", stringsAsFactors = F))
tagcodes$RelDT <- as.POSIXct(tagcodes$RelDT, format = "%m/%d/%Y %I:%M:%S %p", tz = "Etc/GMT+8")
latest <- read.csv("latest_download.csv", stringsAsFactors = F)

study_tagcodes <- tagcodes[tagcodes$StudyID == "SCARF_San_Joaquin_Spring_run_2020",]
 

if (nrow(study_tagcodes) == 0){
  cat("Project has not yet begun")
}else{
  cat(paste("Project began on ", min(study_tagcodes$RelDT), ", see tagging details below:", sep = ""))

  study_tagcodes$Release <- "Upriver Release"
  study_tagcodes[study_tagcodes$Rel_loc == "Durham_Ferry", "Release"] <- "Downriver Release"
  study_tagcodes[study_tagcodes$Rel_loc == "Franks_Tract", "Release"] <- "Franks Tract Release"
  #study_tagcodes[study_tagcodes$RelDT > as.POSIXct("2020-03-20"), "Release"] <- "Release 2"

  
  
  release_stats <- aggregate(list(First_release_time = study_tagcodes$RelDT),
                             by= list(Release = study_tagcodes$Release),
                             FUN = min)
  release_stats <- merge(release_stats,
                         aggregate(list(Last_release_time = study_tagcodes$RelDT),
                             by= list(Release = study_tagcodes$Release),
                             FUN = max),
                         by = c("Release"))
  
                             
  release_stats <- merge(release_stats, aggregate(list(Number_fish_released =
                                                         study_tagcodes$TagID_Hex),
                             by= list(Release = study_tagcodes$Release),
                             FUN = function(x) {length(unique(x))}),
                         by = c("Release"))
  
  release_stats <- merge(release_stats,
                         aggregate(list(Release_location = study_tagcodes$Rel_loc),
                             by= list(Release = study_tagcodes$Release),
                             FUN = function(x) {head(x,1)}),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Release_rkm = study_tagcodes$Rel_rkm),
                             by= list(Release = study_tagcodes$Release),
                             FUN = function(x) {head(x,1)}),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Mean_length = study_tagcodes$Length),
                             by= list(Release = study_tagcodes$Release),
                             FUN = mean, na.rm = T),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Mean_weight = study_tagcodes$Weight),
                             by= list(Release = study_tagcodes$Release),
                             FUN = mean, na.rm = T),
                         by = c("Release"))
  
    release_stats2<-release_stats[,-3]
  colnames(release_stats2)[2]<-"Release time"
  
  release_stats[,c("Mean_length", "Mean_weight")] <- round(release_stats[,c("Mean_length", "Mean_weight")],1)
  
  release_stats$First_release_time <- format(release_stats$First_release_time, tz = "Etc/GMT+8")
  
  release_stats$Last_release_time <- format(release_stats$Last_release_time, tz = "Etc/GMT+8")
  
  kable(release_stats, format = "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left")
}                       
Project began on 2020-03-16 19:30:00, see tagging details below:
Release First_release_time Last_release_time Number_fish_released Release_location Release_rkm Mean_length Mean_weight
Downriver Release 2020-03-24 23:30:00 2020-03-24 23:30:00 350 Durham_Ferry 181.80 81.6 5.8
Franks Tract Release 2020-03-24 21:41:00 2020-03-24 21:41:00 100 Franks_Tract 101.74 81.5 5.7
Upriver Release 2020-03-16 19:30:00 2020-03-16 19:30:00 350 Fremont_Ford 270.93 80.9 5.8



2. Real-time Fish Detections


setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

library(cder)
library(reshape2)

detects_study <- fread(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products\\Study_detection_files\\detects_SCARF_San_Joaquin_Spring_run_2020.csv", sep = ""), colClasses = c(DateTime_PST = "character", RelDT = "character"))


if(nrow(detects_study)>0){
  detects_study$DateTime_PST <- as.POSIXct(detects_study$DateTime_PST, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
  detects_study <- merge(detects_study, study_tagcodes[,c("TagID_Hex", "RelDT", "StudyID", "Release", "tag_life")], by.x = "TagCode", by.y = "TagID_Hex")
}


detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]

if (nrow(detects_benicia)>0) {
  detects_benicia <- merge(detects_benicia,aggregate(list(first_detect = detects_benicia$DateTime_PST), by = list(TagCode= detects_benicia$TagCode), FUN = min))
  
  detects_benicia$Day <- as.Date(detects_benicia$first_detect, "Etc/GMT+8")
  
  starttime <- as.Date(min(detects_benicia$RelDT), "Etc/GMT+8")
  #endtime <- as.Date(c(Sys.time()))#, max(detects_benicia$first_detect)+60*60*24)))
  #wlk_flow <- cdec_query("COL", "20", "H", starttime, endtime+1)
  #wlk_flow$datetime <- as.Date(wlk_flow$datetime)
  #wlk_flow_day <- aggregate(list(parameter_value = wlk_flow$parameter_value), by = list(Day = wlk_flow$datetime), FUN = mean, na.rm = T)
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_benicia$RelDT)+(detects_benicia$tag_life*1.5)))
 
  
  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))
  
  rels <- unique(study_tagcodes[study_tagcodes$StudyID == unique(detects_benicia$StudyID), "Release"])
  rel_num <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_benicia$Release))])
  
  tagcount <- aggregate(list(unique_tags = detects_benicia$TagCode), by = list(Day = detects_benicia$Day, Release = detects_benicia$Release ), FUN = function(x){length(unique(x))})
  tagcount1 <- reshape2::dcast(tagcount, Day ~ Release)
                    
  daterange1 <- merge(daterange, tagcount1, all.x=T)
  
  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == 'x'] <- paste(i)
    }
  }
  
  #daterange2 <- merge(daterange1, wlk_flow_day, by = "Day", all.x = T)
  daterange2 <- daterange1
  
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL
  
  par(mar=c(6, 5, 2, 5) + 0.1)
  barp <- barplot(t(daterange2[,1:ncol(daterange2)]), plot = FALSE, beside = T)
  barplot(t(daterange2[,1:ncol(daterange2)]), beside = T, col=viridis_pal()(rel_num), 
          xlab = "", ylab = "Number of fish arrivals per day", 
          ylim = c(0,max(daterange2[,1:ncol(daterange2)], na.rm = T)*1.2), 
          las = 2, xlim=c(0,max(barp)+1), cex.lab = 1.5, yaxt = "n", xaxt = "n")#, 
          #legend.text = colnames(daterange2[,1:ncol(daterange2)-1]),
          #args.legend = list(x ='topright', bty='n', inset=c(-0.2,0)), title = "Release Group")
  legend(x ='topleft', legend = colnames(daterange2)[1:ncol(daterange2)], fill= viridis_pal()(rel_num), horiz = T, title = "Release")
  ybreaks <- if(max(daterange2[,1:ncol(daterange2)], na.rm = T) < 4) {max(daterange2[,1:ncol(daterange2)], na.rm = T)} else {5}
  xbreaks <- if(ncol(barp) > 10) {seq(1, ncol(barp), 2)} else {1:ncol(barp)}
  barpmeans <- colMeans(barp)
  axis(1, at = barpmeans[xbreaks], labels = rownames(daterange2)[xbreaks], las = 2)
  axis(2, at = pretty(0:max(daterange2[,1:ncol(daterange2)], na.rm = T), ybreaks))
  box()

#par(new=T)

#plot(x = barpmeans, daterange2$parameter_value, yaxt = "n", xaxt = "n", ylab = "", xlab = "", col = "blue", type = "l", lwd=2, xlim=c(0,max(barp)+1), ylim = c(min(daterange2$parameter_value, na.rm = T), max(daterange2$parameter_value, na.rm=T)*1.1))#, ylab = "Returning adults", xlab= "Outmigration year", yaxt="n", col="red", pch=20)
#axis(side = 4)#, labels = c(2000:2016), at = c(2000:2016))
#mtext("Flow (cfs) at Colusa Bridge", side=4, line=3, cex=1.5, col="blue")

}else{
  plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}
2.3 Detections at Benicia Bridge

2.3 Detections at Benicia Bridge



3. Survival and Routing Probability


setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

library(RMark)

if (nrow(detects_benicia) == 0){
  WR.surv1 <- data.frame("Release Group"=NA, "Survival (%)"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA, "Detection efficiency (%)"=NA)
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.4 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
}else if (length(table(detects_benicia$general_location)) == 1){
   WR.surv1 <- data.frame("Release Group"=NA, "Survival (%)"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA, "Detection efficiency (%)"=NA)
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.4 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
} else {
  
  benicia <- read.csv("benicia_surv.csv", stringsAsFactors = F)
  benicia$RelDT <- as.POSIXct(benicia$RelDT)

  ## Only do survival to Benicia here
  test3 <- detects_study[detects_study$rkm < 53,]
  
  ## Create inp for survival estimation
  
  inp <- as.data.frame(reshape2::dcast(test3, TagCode ~ rkm, fun.aggregate = length))
  
  ## Sort columns by river km in descending order
  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1
  
  inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]

  inp <- merge(study_tagcodes, inp, by.x = "TagID_Hex", by.y = "TagCode", all.x = T)
  
  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]
  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0] <- 1
  
  inp <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))
  groups_w_detects <- names(table(test3$Release))

  inp[,groups] <- 0
  for (i in groups) {
    inp[as.character(inp$Release) == i, i] <- 1
  }

  inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")
  
  
  if(length(groups) > 1){
  ## make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 
    
    WR.ddl <- make.design.data(WR.process)
    
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    
    inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
    inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)
    if(length(groups_w_detects) > 1){
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel") 
    
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)
    }else{  
      WR.process <- process.data(inp.df, model="CJS", begin.time=1) 
    
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    }
      
    WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- cbind(Release = groups_w_detects, round(WR.mark.rel$results$real[seq(from=1,to=length(groups_w_detects)*2,by = 2),c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
    WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
    WR.surv <- rbind(WR.surv, WR.surv.rel)
    
  }else{
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)
    WRinp <- convert.inp(inp.df)
    WR.process <- process.data(WRinp, model="CJS", begin.time=1) 
    
      
    WR.ddl <- make.design.data(WR.process)
    
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)

    WR.surv <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
    
  }
  
  WR.surv$Detection_efficiency <- NA
  WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
    
  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")

  print(kable(WR.surv1, row.names = F, "html", caption = "3.4 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))    
  
  ## Find mean release time per release group, and ALL
  reltimes <- aggregate(list(RelDT = study_tagcodes$RelDT), by = list(Release = study_tagcodes$Release), FUN = mean)
  reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$RelDT)))

  ## Assign whether the results are tentative or final
  quality <- "tentative"
  if(endtime < as.Date(format(Sys.time(), "%Y-%m-%d"))) { quality <- "final"}
  WR.surv <- merge(WR.surv, reltimes, by = "Release", all.x = T)
  
  WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = '1970-01-01')
  
  ## remove old benicia record for this studyID
  benicia <- benicia[!benicia$StudyID == unique(study_tagcodes$StudyID),]
  
  benicia <- rbind(benicia, data.frame(WR.surv, StudyID = unique(study_tagcodes$StudyID), data_quality = quality))
  
  write.csv(benicia, "benicia_surv.csv", row.names = F, quote = F) 
  
}
3.4 Minimum survival to Benicia Bridge East Span (using CJS survival model)
Release Group Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%)
ALL 0.5 0.2 0.2 1.3 100
Downriver Release 0.0 NA NA NA NA
Franks Tract Release 2.0 1.4 0.5 7.6 NA
Upriver Release 0.6 0.4 0.1 2.3 NA



4. Detections statistics at all realtime receivers


setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

if (nrow(detects_study) == 0){
  "No detections yet"
} else {
  study_count <- nrow(study_tagcodes)
  gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)
  
  arrivals <- aggregate(list(DateTime_PST = detects_study$DateTime_PST), by = list(general_location = detects_study$general_location, TagCode = detects_study$TagCode), FUN = min)
  
  tag_stats <- aggregate(list(First_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = min)
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Mean_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = mean), 
                     by = c("general_location"))
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Last_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = max), 
                     by = c("general_location"))
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Fish_count = arrivals$TagCode), 
                         by= list(general_location = arrivals$general_location), 
                         FUN = function(x) {length(unique(x))}), 
                     by = c("general_location"))
  tag_stats$Percent_arrived <- round(tag_stats$Fish_count/study_count * 100,2)
      
  tag_stats <- merge(tag_stats, unique(gen_locs[,c("general_location", "rkm")]))
  
  tag_stats <- tag_stats[order(tag_stats$rkm, decreasing = T),]
  
  tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")

  print(kable(tag_stats, row.names = F, 
              caption = "4.1 Detections for all releases combined",
              "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
  
  for (j in sort(unique(study_tagcodes$Release))) {
    
    if(nrow(detects_study[detects_study$Release == j,]) > 0 ) {
    
      temp <- detects_study[detects_study$Release == j,]
      
        arrivals1 <- aggregate(list(DateTime_PST = temp$DateTime_PST), by = list(general_location = temp$general_location, TagCode = temp$TagCode), FUN = min)
  
      rel_count <- nrow(study_tagcodes[study_tagcodes$Release == j,])
  
      tag_stats1 <- aggregate(list(First_arrival = arrivals1$DateTime_PST), 
                             by= list(general_location = arrivals1$general_location), 
                             FUN = min)
      tag_stats1 <- merge(tag_stats1, 
                         aggregate(list(Mean_arrival = arrivals1$DateTime_PST), 
                             by= list(general_location = arrivals1$general_location), 
                             FUN = mean), 
                         by = c("general_location"))
      tag_stats1 <- merge(tag_stats1, 
                   aggregate(list(Last_arrival = arrivals1$DateTime_PST), 
                       by= list(general_location = arrivals1$general_location), 
                       FUN = max), 
                   by = c("general_location"))
      tag_stats1 <- merge(tag_stats1, 
                         aggregate(list(Fish_count = arrivals1$TagCode), 
                                   by= list(general_location = arrivals1$general_location), 
                                   FUN = function(x) {length(unique(x))}), 
                         by = c("general_location"))
      
      tag_stats1$Percent_arrived <- round(tag_stats1$Fish_count/rel_count * 100,2)
    
      tag_stats1 <- merge(tag_stats1, unique(gen_locs[,c("general_location", "rkm")]))
    
      tag_stats1 <- tag_stats1[order(tag_stats1$rkm, decreasing = T),]
      
      tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")
      
      final_stats <- kable(tag_stats1, row.names = F, 
            caption = paste("4.2 Detections for",j,"release groups", sep = " "),
            "html")
      
      print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
      
    } else {
      cat("\n\n\\pagebreak\n")
      print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
      cat("\n\n\\pagebreak\n")
    }
  }
}
4.1 Detections for all releases combined
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived rkm
TowerBridge 2020-03-30 17:20:53 2020-03-30 17:20:53 2020-03-30 17:20:53 1 0.12 172.000
I80-50_Br 2020-03-30 09:49:04 2020-03-30 09:49:04 2020-03-30 09:49:04 1 0.12 170.748
Old River 2020-03-28 19:04:58 2020-04-05 00:44:51 2020-04-14 10:11:20 7 0.88 153.001
CVP_Tank 2020-03-31 15:35:08 2020-04-13 02:34:22 2020-06-04 12:39:19 7 0.88 144.531
Georgiana_Slough1 2020-03-28 12:05:20 2020-04-05 00:52:00 2020-04-17 02:16:37 3 0.38 119.208
Sac_BlwGeorgiana 2020-04-13 10:24:36 2020-04-15 14:52:08 2020-04-17 19:19:40 2 0.25 119.058
Georgiana_Slough2 2020-03-28 11:45:32 2020-04-05 00:37:35 2020-04-17 02:05:36 3 0.38 118.758
Sac_BlwGeorgiana2 2020-04-13 10:38:44 2020-04-15 15:08:59 2020-04-17 19:39:15 2 0.25 118.398
Benicia_east 2020-03-31 08:18:06 2020-04-04 02:27:00 2020-04-09 08:25:55 4 0.50 52.240
Benicia_west 2020-03-31 08:22:18 2020-04-03 23:53:59 2020-04-09 08:28:19 4 0.50 52.040
4.2 Detections for Downriver Release release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived rkm
Old River 2020-04-03 03:19:48 2020-04-08 07:00:48 2020-04-14 10:11:20 4 1.14 153.001
CVP_Tank 2020-03-31 15:35:08 2020-04-03 23:30:05 2020-04-07 20:38:40 3 0.86 144.531
Georgiana_Slough1 2020-03-31 12:14:03 2020-04-08 19:15:20 2020-04-17 02:16:37 2 0.57 119.208
Sac_BlwGeorgiana 2020-04-13 10:24:36 2020-04-15 14:52:08 2020-04-17 19:19:40 2 0.57 119.058
Georgiana_Slough2 2020-03-31 12:01:39 2020-04-08 19:03:37 2020-04-17 02:05:36 2 0.57 118.758
Sac_BlwGeorgiana2 2020-04-13 10:38:44 2020-04-15 15:08:59 2020-04-17 19:39:15 2 0.57 118.398
4.2 Detections for Franks Tract Release release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived rkm
TowerBridge 2020-03-30 17:20:53 2020-03-30 17:20:53 2020-03-30 17:20:53 1 1 172.000
I80-50_Br 2020-03-30 09:49:04 2020-03-30 09:49:04 2020-03-30 09:49:04 1 1 170.748
Old River 2020-03-28 19:04:58 2020-03-31 16:23:35 2020-04-04 01:24:52 3 3 153.001
Georgiana_Slough1 2020-03-28 12:05:20 2020-03-28 12:05:20 2020-03-28 12:05:20 1 1 119.208
Georgiana_Slough2 2020-03-28 11:45:32 2020-03-28 11:45:32 2020-03-28 11:45:32 1 1 118.758
Benicia_east 2020-04-02 16:10:40 2020-04-06 00:18:17 2020-04-09 08:25:55 2 2 52.240
Benicia_west 2020-04-02 16:18:24 2020-04-06 00:23:21 2020-04-09 08:28:19 2 2 52.040
4.2 Detections for Upriver Release release groups
general_location First_arrival Mean_arrival Last_arrival Fish_count Percent_arrived rkm
CVP_Tank 2020-03-31 20:31:45 2020-04-19 22:52:35 2020-06-04 12:39:19 4 1.14 144.531
Benicia_east 2020-03-31 08:18:06 2020-04-02 04:35:43 2020-04-04 00:53:20 2 0.57 52.240
Benicia_west 2020-03-31 08:22:18 2020-04-01 23:24:36 2020-04-03 14:26:55 2 0.57 52.040
## Set fig height for next plot here, based on how long fish have been at large
figheight <- min(12,max(c(3,as.numeric(difftime(Sys.Date(), min(study_tagcodes$RelDT), units = "days")) / 4)))


4.3 Fish arrivals per day

setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = ""))

if (nrow(detects_study) == 0){
  "No detections yet"
} else {
  
  beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F)
  beacon_by_day$day <- as.Date(beacon_by_day$day)
  
  arrivals$day <- as.Date(format(arrivals$DateTime_PST, "%Y-%m-%d"))
  
  arrivals_per_day <- aggregate(list(New_arrivals = arrivals$TagCode), by = list(day = arrivals$day, general_location = arrivals$general_location), length)
  arrivals_per_day$day <- as.Date(arrivals_per_day$day)

  ## Now subset to only look at data for the correct beacon for that day
  beacon_by_day <- as.data.frame(beacon_by_day[which(beacon_by_day$TagCode == beacon_by_day$beacon),])
  
  ## Now only keep beacon by day for days since fish were released
  beacon_by_day <- beacon_by_day[beacon_by_day$day >= as.Date(min(study_tagcodes$RelDT)) & beacon_by_day$day <= endtime,]  
  
  beacon_by_day <- merge(beacon_by_day, gen_locs[,c("location", "general_location","rkm")], by = "location", all.x = T)

  arrivals_per_day <- merge(beacon_by_day, arrivals_per_day, all.x = T, by = c("general_location", "day"))
  
  arrivals_per_day$day <- factor(arrivals_per_day$day)
  
  ## Remove bench test and other NA locations
  arrivals_per_day <- arrivals_per_day[!arrivals_per_day$general_location == "Bench_test",]
  arrivals_per_day <- arrivals_per_day[is.na(arrivals_per_day$general_location) == F,]
  
  ## Change order of data to plot decreasing rkm
  arrivals_per_day <- arrivals_per_day[order(arrivals_per_day$rkm, decreasing = T),]
  arrivals_per_day$general_location <- factor(arrivals_per_day$general_location, unique(arrivals_per_day$general_location))
  
  
  ggplot(data=arrivals_per_day, aes(x=general_location, y=fct_rev(as_factor(day)))) +
  geom_tile(fill = "lightgray", color = "black") + 
  geom_text(aes(label=New_arrivals)) +
  labs(x="General Location", y = "Date") +
  theme(panel.background = element_blank(), axis.text.x = element_text(angle = 90, hjust = 1))
}
Gray tiles = receiver location was operational, white tiles = receiver location non-operational

Gray tiles = receiver location was operational, white tiles = receiver location non-operational

rm(list = ls())
cleanup(ask = F)