Central Valley Enhanced

Acoustic Tagging Project

logo





Feather River Hatchery and Wild Fall-run Chinook salmon

2020-2021 Season (PROVISIONAL DATA)



1. Project Status


Study is complete, all tags are no longer active. All times in Pacific Standard Time.


Telemetry Study Template for this study is not available

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

library(knitr)
library(kableExtra)
library(lubridate)
library(data.table)
library(ggplot2)
library(RMark)
library(scales)
library(viridis)
library(forcats)
library(reshape2)
library(png)
library(dataRetrieval)
library(rerddap)

##################################################################################################################
#### ASSIGN STUDY ID IN THIS NEXT LINE OF CODE ####
study <- "FRH_Fall_2021"
##################################################################################################################

detects_study <- fread("study_detections_archive.csv", stringsAsFactors = F, colClasses = c(DateTime_PST = "character", RelDT = "character"))
detects_study <- as.data.frame(detects_study[detects_study$Study_ID == study,])
detects_study$DateTime_PST <- as.POSIXct(detects_study$DateTime_PST, format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT+8")
detects_study$release_time <- as.POSIXct(detects_study$RelDT, format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT+8")

colnames(detects_study)[which(colnames(detects_study) == "Weight")] <- "weight"
colnames(detects_study)[which(colnames(detects_study) == "Length")] <- "length"
colnames(detects_study)[which(colnames(detects_study) == "Rel_rkm")] <- "release_rkm"
colnames(detects_study)[which(colnames(detects_study) == "Rel_loc")] <- "release_location"
colnames(detects_study)[which(colnames(detects_study) == "rkm")] <- "river_km"

latest <- read.csv("latest_download.csv", stringsAsFactors = F)$x

##################################################################################################################
#### TO RUN THE FOLLOWING CODE CHUNKS FROM HERE ON DOWN USING R ERDDAP, UN-COMMENT THESE NEXT 9 LINES OF CODE ####
##################################################################################################################
# cache_delete_all()
# query=paste('&',"Study_ID",'="',study,'"',sep = '')
# datafile=URLencode(paste("https://oceanview.pfeg.noaa.gov/erddap/tabledap/","FEDcalFishTrack",".csv?",query,sep = ''))
# options(url.method = "libcurl", download.file.method = "libcurl", timeout = 180)
# detects_study <- data.frame(read.csv(datafile,row.names = NULL, stringsAsFactors = F))
# detects_study <- detects_study[-1,]
# detects_study$DateTime_PST <- as.POSIXct(detects_study$local_time, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
# detects_study$release_time <- as.POSIXct(detects_study$release_time, format = "%Y-%m-%d %H:%M:%S", "Etc/GMT+8")
# detects_study$river_km <- as.numeric(detects_study$river_km)
##################################################################################################################


if (nrow(detects_study) == 0){
  cat("Study has not yet begun")
}else{
  
  if (min(detects_study$release_time) > Sys.time()){
    cat("Study has not yet begun, below data is a placeholder:")
  }
  if (min(detects_study$release_time) < Sys.time()){
    cat(paste("Study began on ", min(detects_study$release_time), ", see tagging details below:", sep = ""))
  }
  
  ########################################################################
  #### ASSIGN RELEASE GROUPS HERE ####
  #######################################################################
    detects_study$Release <- "Wild release"
    #detects_study[detects_study$release_time > as.POSIXct("2021-03-09") & detects_study$release_time < as.POSIXct("2021-03-17"), "Release"] <- "Release 2"
    detects_study[detects_study$release_time > as.POSIXct("2021-06-05"), "Release"] <- "Hatchery release"
  #######################################################################
  
  study_tagcodes <- unique(detects_study[,c("TagCode", "release_time", "weight", "length", "release_rkm", "release_location", "Release")])

  
  release_stats <- aggregate(list(First_release_time = study_tagcodes$release_time),
                             by= list(Release = study_tagcodes$Release),
                             FUN = min)
  release_stats <- merge(release_stats,
                         aggregate(list(Last_release_time = study_tagcodes$release_time),
                                   by= list(Release = study_tagcodes$Release),
                                   FUN = max),
                         by = c("Release"))
  
  
  release_stats <- merge(release_stats, aggregate(list(Number_fish_released =
                                                         study_tagcodes$TagCode),
                                                  by= list(Release = study_tagcodes$Release),
                                                  FUN = function(x) {length(unique(x))}),
                         by = c("Release"))
  
  release_stats <- merge(release_stats,
                         aggregate(list(Release_location = study_tagcodes$release_location),
                                   by= list(Release = study_tagcodes$Release),
                                   FUN = function(x) {head(x,1)}),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Release_rkm = study_tagcodes$release_rkm),
                                   by= list(Release = study_tagcodes$Release),
                                   FUN = function(x) {head(x,1)}),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Mean_length = as.numeric(study_tagcodes$length)),
                                   by= list(Release = study_tagcodes$Release),
                                   FUN = mean, na.rm = T),
                         by = c("Release"))
  release_stats <- merge(release_stats,
                         aggregate(list(Mean_weight = as.numeric(study_tagcodes$weight)),
                                   by= list(Release = study_tagcodes$Release),
                                   FUN = mean, na.rm = T),
                         by = c("Release"))
  

  release_stats[,c("Mean_length", "Mean_weight")] <- round(release_stats[,c("Mean_length", "Mean_weight")],1)
  
  release_stats$First_release_time <- format(release_stats$First_release_time, tz = "Etc/GMT+8")
  
  release_stats$Last_release_time <- format(release_stats$Last_release_time, tz = "Etc/GMT+8")
  
  release_stats <- release_stats[order(release_stats$First_release_time),]
  
  kable(release_stats, format = "html", row.names = F) %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left")

}                       
Study began on 2021-04-30 10:00:00, see tagging details below:
Release First_release_time Last_release_time Number_fish_released Release_location Release_rkm Mean_length Mean_weight
Wild release 2021-04-30 10:00:00 2021-05-21 10:00:00 4 Below Eye 302.24 91.2 7.8
Hatchery release 2021-06-11 10:00:00 2021-06-11 10:00:00 132 Below TAO Boat Ramp 302.24 109.9 16.1



2. Real-time Fish Detections


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

## THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"
} else {
  arrivals <- aggregate(list(DateTime_PST = detects_study$DateTime_PST), by = list(general_location = detects_study$general_location, TagCode = detects_study$TagCode), FUN = min)
    
  beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F)
  beacon_by_day$day <- as.Date(beacon_by_day$day)
  
  gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)
  
  arrivals$day <- as.Date(format(arrivals$DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8"))
  
  arrivals_per_day <- aggregate(list(New_arrivals = arrivals$TagCode), by = list(day = arrivals$day, general_location = arrivals$general_location), length)
  arrivals_per_day$day <- as.Date(arrivals_per_day$day)

  ## Now subset to only look at data for the correct beacon for that day
  beacon_by_day <- as.data.frame(beacon_by_day[which(beacon_by_day$TagCode == beacon_by_day$beacon),])
  
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))
  ## Now only keep beacon by day for days since fish were released
  beacon_by_day <- beacon_by_day[beacon_by_day$day >= as.Date(min(study_tagcodes$release_time)) & beacon_by_day$day <= endtime,]  
  
  beacon_by_day <- merge(beacon_by_day, gen_locs[,c("location", "general_location","rkm")], by = "location", all.x = T)

  arrivals_per_day <- merge(unique(beacon_by_day[,c("general_location", "day", "rkm")]), arrivals_per_day, all.x = T, by = c("general_location", "day"))
  
  arrivals_per_day$day <- factor(arrivals_per_day$day)
  
  ## Remove bench test and other NA locations
  arrivals_per_day <- arrivals_per_day[!arrivals_per_day$general_location == "Bench_test",]
  arrivals_per_day <- arrivals_per_day[is.na(arrivals_per_day$general_location) == F,]

  ## Remove sites that were not operation the whole time
  gen_locs_days_in_oper <- aggregate(list(days_in_oper = arrivals_per_day$day), by = list(general_location = arrivals_per_day$general_location), FUN = length)
  gen_locs_days_in_oper <- gen_locs_days_in_oper[gen_locs_days_in_oper$days_in_oper == max(gen_locs_days_in_oper$days_in_oper),]
  
  arrivals_per_day_in_oper <- arrivals_per_day[arrivals_per_day$general_location %in% gen_locs_days_in_oper$general_location,]
  fish_per_site <- aggregate(list(fish_count = arrivals_per_day_in_oper$New_arrivals), by = list(general_location = arrivals_per_day_in_oper$general_location), FUN = sum, na.rm = T)
  
  active_gen_locs <- gen_locs[is.na(gen_locs$stop),]
  active_gen_locs <- active_gen_locs[active_gen_locs$general_location %in% fish_per_site$general_location,]
  ## estimate mean lat and lons for each genloc
  gen_locs_mean_coords <- aggregate(list(latitude = active_gen_locs$latitude), by = list(general_location = active_gen_locs$general_location), FUN = mean)
  gen_locs_mean_coords <- merge(gen_locs_mean_coords, aggregate(list(longitude = active_gen_locs$longitude), by = list(general_location = active_gen_locs$general_location), FUN = mean))
  
  fish_per_site <- merge(fish_per_site, gen_locs_mean_coords)
  
  library(leaflet)
  library(maps)
  library(htmlwidgets)
  library(leaflet.extras)

  icons <- awesomeIcons(iconColor = "lightblue",
                      #library = "ion",
                      text = fish_per_site$fish_count)
  
  leaflet(data = fish_per_site) %>%
      # setView(-72.14600, 43.82977, zoom = 8) %>% 
      addProviderTiles("Esri.WorldStreetMap", group = "Map") %>%
      addProviderTiles("Esri.WorldImagery", group = "Satellite") %>% 
      addProviderTiles("Esri.WorldShadedRelief", group = "Relief") %>%
      # Marker data are from the sites data frame. We need the ~ symbols
      # to indicate the columns of the data frame.
      addMarkers(~longitude, ~latitude, label = ~fish_count, group = "Receiver Sites", popup = ~general_location, labelOptions = labelOptions(noHide = T, textsize = "15px")) %>% 
      #addAwesomeMarkers(~longitude, ~latitude, icon = icons, labelOptions(textsize = "15px")) %>%
      addScaleBar(position = "bottomleft") %>%
      addLayersControl(
          baseGroups = c("Street Map", "Satellite", "Relief"),
          options = layersControlOptions(collapsed = FALSE))
}

[1] “No detections yet”


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_tower <- detects_study[detects_study$general_location == "TowerBridge",]

#wlk_flow <- read.csv("wlk.csv")

if (nrow(detects_tower) == 0){
  plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
} else {
  
  detects_tower <- merge(detects_tower,aggregate(list(first_detect = detects_tower$DateTime_PST), by = list(TagCode= detects_tower$TagCode), FUN = min))
  
  detects_tower$Day <- as.Date(detects_tower$first_detect, "Etc/GMT+8")
  
  starttime <- as.Date(min(detects_tower$release_time), "Etc/GMT+8")
  ## Endtime should be either now, or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_tower$release_time)+(as.numeric(detects_tower$tag_life))))
  

  ## download wilkins slough flow data

  wlk_flow <- readNWISuv(siteNumbers = "11390500", parameterCd="00060", startDate = starttime, endDate = endtime+1)
  
  wlk_flow$datetime <- as.Date(format(wlk_flow$dateTime, "%Y-%m-%d"))
  wlk_flow_day <- aggregate(list(parameter_value = wlk_flow$X_00060_00000),
                            by = list(Day = wlk_flow$datetime),
                            FUN = mean, na.rm = T)


  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))

  #rels <- unique(study_tagcodes[study_tagcodes$StudyID == unique(detects_tower$StudyID), "Release"])
  rels <- unique(study_tagcodes$Release)
  rel_num <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_tower$Release))])

  tagcount <- aggregate(list(unique_tags = detects_tower$TagCode), by = list(Day = detects_tower$Day, Release = detects_tower$Release ), FUN = function(x){length(unique(x))})
  tagcount1 <- reshape2::dcast(tagcount, Day ~ Release)

  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0

  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == 'x'] <- paste(i)
    }
  }
  
  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
  
  daterange2 <- merge(daterange1, wlk_flow_day, by = "Day", all.x = T)

  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL

  par(mar=c(6, 5, 2, 5) + 0.1)
  # barp <- barplot(t(daterange2[,1:ncol(daterange2)-1]), plot = FALSE, beside = T)
  # barplot(t(daterange2[,1:ncol(daterange2)-1]), beside = T, col=brewer.pal(n = rel_num, name = "Set1"),
  #         xlab = "", ylab = "Number of fish arrivals per day",
  #         ylim = c(0,max(daterange2[,1:ncol(daterange2)-1], na.rm = T)*1.2),
  #         las = 2, xlim=c(0,max(barp)+1), cex.lab = 1.5, yaxt = "n", xaxt ="n", border = NA)#,
  # #border=NA
  # #legend.text = colnames(daterange2[,1:ncol(daterange2)-1]),
  # #args.legend = list(x ='topright', bty='n', inset=c(-0.2,0)), title = "Release Group")
  # legend(x ='topleft', legend = colnames(daterange2)[1:ncol(daterange2)-1], fill= brewer.pal(n = rel_num, name = "Set1"), horiz = T, title = "Release")
  # ybreaks <- if(max(daterange2[,1:ncol(daterange2)-1], na.rm = T) < 4) {max(daterange2[,1:ncol(daterange2)-1], na.rm = T)} else {5}
  # xbreaks <- if(ncol(barp) > 10) {seq(1, ncol(barp), 2)} else {1:ncol(barp)}
  # barpmeans <- colMeans(barp)
  # axis(1, at = barpmeans[xbreaks], labels = rownames(daterange2[xbreaks,]), las = 2)
  # axis(2, at = pretty(0:max(daterange2[,1:ncol(daterange2)-1], na.rm = T), ybreaks))
  # 
  # par(new=T)
  # 
  # plot(x = barpmeans, daterange2$parameter_value, yaxt = "n", xaxt = "n", ylab = "", xlab = "", col = "lightslateblue", type = "l", lwd=1.5, xlim=c(0,max(barp)+1), ylim = c(min(daterange2$parameter_value, na.rm = T), max(daterange2$parameter_value, na.rm=T)*1.1))#, ylab = "Returning adults", xlab= "Outmigration year", yaxt="n", col="red", pch=20)
  # axis(side = 4)#, labels = c(2000:2016), at = c(2000:2016))
  # mtext("Flow (cfs) at Wilkins Slough", side=4, line=3, cex=1.5, col="lightslateblue")
  daterange2$Date <- as.Date(row.names(daterange2))
  daterange2_flow <- daterange2[,c("Date", "parameter_value")]
  daterange3 <- melt(daterange2[,!(names(daterange2) %in% c("parameter_value"))], id.vars = "Date", variable.name = ".")
  
  ay <- list(
    overlaying = "y",
    nticks = 5,
    color = "#947FFF",
    side = "right",
    title = "Flow (cfs) at Wilkins Slough",
    automargin = TRUE
  )
  
  # p <- ggplot(data = daterange3, aes(x = Date, y = value, color = ., fill = .)) +
  #   geom_bar(stat='identity') +
  #   ylab("Number of fish arrivals per day") +
  #   #xlim(c(as.Date("2021-02-01"), as.Date("2021-02-05"))) +
  #   #geom_line(data= daterange2_flow, aes(x = Date, y = parameter_value/500), color = alpha("#947FFF", alpha = 0.5))+
  #   #scale_x_date(date_breaks = "5 days") +
  #   #scale_y_continuous(name = "Number of fish arrivals per day",
  #     # Add a second axis and specify its features
  #   #  sec.axis = sec_axis(~.*500, name="Second Axis")) +
  #   theme_bw() +
  #   theme(panel.border = element_rect(colour = "black", fill=NA))

  
  daterange3$. <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))
  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
    add_bars(x = ~Date, y = ~value, color = ~.) %>%
    add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                     x=0.01, xanchor="left",
                     y=1.056, yanchor="top",    # Same y as legend below
                     legendtitle=TRUE, showarrow=FALSE ) %>%
    add_lines(x=~daterange2_flow$Date, y=~daterange2_flow$parameter_value, line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, inherit=FALSE) %>%
    layout(yaxis2 = ay,showlegend = T, 
           barmode = "stack",
           xaxis = list(title = "Date", mirror=T,ticks='outside',showline=T), yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks='outside',showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50)
           )

}
2.3 Detections at Tower Bridge (downtown Sacramento) versus Sacramento River flows at Wilkins Slough for duration of tag life

2.3 Detections at Tower Bridge (downtown Sacramento) versus Sacramento River flows at Wilkins Slough for duration of tag life


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]

if (nrow(detects_benicia)>0) {
  detects_benicia <- merge(detects_benicia,aggregate(list(first_detect = detects_benicia$DateTime_PST), by = list(TagCode= detects_benicia$TagCode), FUN = min))
  
  detects_benicia$Day <- as.Date(detects_benicia$first_detect, "Etc/GMT+8")
  
  starttime <- as.Date(min(detects_benicia$release_time), "Etc/GMT+8")
  ## Endtime should be either now or end of predicted tag life, whichever comes first
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_benicia$release_time)+(as.numeric(detects_benicia$tag_life))))
  #wlk_flow <- cdec_query("COL", "20", "H", starttime, endtime+1)
  #wlk_flow$datetime <- as.Date(wlk_flow$datetime)
  #wlk_flow_day <- aggregate(list(parameter_value = wlk_flow$parameter_value), by = list(Day = wlk_flow$datetime), FUN = mean, na.rm = T)
  
  daterange <- data.frame(Day = seq.Date(from = starttime, to = endtime, by = "day"))
  
  rels <- unique(study_tagcodes$Release)
  rel_num <- length(rels)
  rels_no_detects <- as.character(rels[!(rels %in% unique(detects_benicia$Release))])
  
  tagcount <- aggregate(list(unique_tags = detects_benicia$TagCode), by = list(Day = detects_benicia$Day, Release = detects_benicia$Release ), FUN = function(x){length(unique(x))})
  tagcount1 <- reshape2::dcast(tagcount, Day ~ Release)
                    
  daterange1 <- merge(daterange, tagcount1, all.x=T)
  daterange1[is.na(daterange1)] <- 0
  
  if(length(rels_no_detects)>0){
    for(i in rels_no_detects){
      daterange1 <- cbind(daterange1, x=NA)
      names(daterange1)[names(daterange1) == 'x'] <- paste(i)
    }
  }
  
  ## reorder columns in alphabetical order so its coloring in barplots is consistent
  daterange1 <- daterange1[,order(colnames(daterange1))]
    
  #daterange2 <- merge(daterange1, wlk_flow_day, by = "Day", all.x = T)
  daterange2 <- daterange1
  
  rownames(daterange2) <- daterange2$Day
  daterange2$Day <- NULL
  
  par(mar=c(6, 5, 2, 5) + 0.1)
  # barp <- barplot(t(daterange2[,1:ncol(daterange2)]), plot = FALSE, beside = T)
  # barplot(t(daterange2[,1:ncol(daterange2)]), beside = T, col=brewer.pal(n = rel_num, name = "Dark2"), 
  #         xlab = "", ylab = "Number of fish arrivals per day", 
  #         ylim = c(0,max(daterange2[,1:ncol(daterange2)], na.rm = T)*1.2), 
  #         las = 2, xlim=c(0,max(barp)+1), cex.lab = 1.5, yaxt = "n", xaxt = "n", border = NA)#, 
  #         #legend.text = colnames(daterange2[,1:ncol(daterange2)-1]),
  #         #args.legend = list(x ='topright', bty='n', inset=c(-0.2,0)), title = "Release Group")
  # legend(x ='topleft', legend = colnames(daterange2)[1:ncol(daterange2)], fill= brewer.pal(n = rel_num, name = "Set1"), horiz = T, title = "Release")
  # ybreaks <- if(max(daterange2[,1:ncol(daterange2)], na.rm = T) < 4) {max(daterange2[,1:ncol(daterange2)], na.rm = T)} else {5}
  # xbreaks <- if(ncol(barp) > 10) {seq(1, ncol(barp), 2)} else {1:ncol(barp)}
  # barpmeans <- colMeans(barp)
  # axis(1, at = barpmeans[xbreaks], labels = rownames(daterange2)[xbreaks], las = 2)
  # axis(2, at = pretty(0:max(daterange2[,1:ncol(daterange2)], na.rm = T), ybreaks))
  # box()
  daterange2$Date <- as.Date(row.names(daterange2))
  daterange3 <- melt(daterange2, id.vars = "Date", variable.name = ".", )
  
  # p <- ggplot(data = daterange3, aes(x = Date, y = value, color = ., fill = .)) +
  #   geom_bar(stat='identity') +
  #   ylab("Number of fish arrivals per day") +
  #   #xlim(range(daterange$Day)) +
  #   #geom_line(data= daterange2_flow, aes(x = Date, y = parameter_value/500), color = alpha("#947FFF", alpha = 0.5))+
  #   #scale_x_date(date_breaks = "5 days") +
  #   #scale_y_continuous(name = "Number of fish arrivals per day",
  #     # Add a second axis and specify its features
  #   #  sec.axis = sec_axis(~.*500, name="Second Axis")) +
  #   theme_bw() +
  #   theme(panel.border = element_rect(colour = "black", fill=NA))

  
  daterange3$. <- factor(daterange3$., levels = sort(unique(daterange3$.), decreasing = T))
  plot_ly(daterange3, width = 900, height = 600, dynamicTicks = TRUE) %>%
    add_bars(x = ~Date, y = ~value, color = ~.) %>%
    add_annotations( text="Release (click on legend items to isolate)", xref="paper", yref="paper",
                     x=0.01, xanchor="left",
                     y=1.056, yanchor="top",    # Same y as legend below
                     legendtitle=TRUE, showarrow=FALSE ) %>%
    #add_lines(x=~daterange2_flow$Date, y=~daterange2_flow$parameter_value, line = list(color = alpha("#947FFF", alpha = 0.5)), yaxis="y2", showlegend=FALSE, inherit=FALSE) %>%
    layout(showlegend = T, 
           barmode = "stack",
           xaxis = list(title = "Date", mirror=T,ticks='outside',showline=T), yaxis = list(title = "Number of fish arrivals per day", mirror=T,ticks='outside',showline=T),
          legend = list(orientation = "h",x = 0.34, y = 1.066),
          margin=list(l = 50,r = 100,b = 50,t = 50)
           )



}else{
  plot(1:2, type = "n", xlab = "",xaxt = "n", yaxt = "n", ylab = "Number of fish arrivals per day")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}
2.4 Detections at Benicia Bridge for duration of tag life

2.4 Detections at Benicia Bridge for duration of tag life



3. Survival and Routing Probability


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

detects_tower <- detects_study[detects_study$general_location == "TowerBridge",]

if (nrow(detects_tower) == 0){
  WR.surv <- data.frame("Release"=NA, "Survival (%)"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA, "Detection efficiency (%)"=NA)
  colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  
  print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS survival model). If Yolo Bypass Weirs are overtopping during migration, fish may have taken that route, and therefore this is a minimum estimate of survival") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
} else {
  
  study_count <- nrow(study_tagcodes)
  ## Only do survival to Sac for now
  test <- detects_study[which(detects_study$river_km > 168 & detects_study$river_km < 175),]
  
  ## Create inp for survival estimation
  
  inp <- as.data.frame(reshape2::dcast(test, TagCode ~ river_km, fun.aggregate = length))
  
  ## Sort columns by river km in descending order
  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1
  
  if(gen_loc_sites <2){
    WR.surv <- data.frame("Release"=NA, "Survival (%)"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA, "Detection efficiency (%)"=NA)
    colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
    
    print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS survival model). If Yolo Bypass Weirs are overtopping during migration, fish may have taken that route, and therefore this is a minimum estimate of survival") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
  }else{
    
    inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]
    
    inp <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)
    
    inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]
    inp2[is.na(inp2)] <- 0
    inp2[inp2 > 0] <- 1
    
    inp <- cbind(inp, inp2)
    groups <- as.character(sort(unique(inp$Release)))
    test$Release <- factor(test$Release, levels = groups)
    
    inp[,groups] <- 0
    for (i in groups) {
      inp[as.character(inp$Release) == i, i] <- 1
    }
    
    inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")
    
    
    if(length(groups) > 1){
      ## make sure factor levels have a release that has detections first. if first release in factor order has zero detectins, model goes haywire
      inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = factor(inp$Release, levels = names(sort(table(test$Release),decreasing = T))), stringsAsFactors = F)
      
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel")     
      
      WR.ddl <- make.design.data(WR.process)
      
      WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
      
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)
      
      WR.surv <- round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1)
      WR.surv <- rbind(WR.surv, round(WR.mark.rel$results$real[seq(from=1,to=length(groups)*2,by = 2),c("estimate", "se", "lcl", "ucl")] * 100,1))
      WR.surv$Detection_efficiency <- NA
      WR.surv[1,"Detection_efficiency"] <-   round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
      
      WR.surv <- cbind(c("ALL", names(sort(table(test$Release),decreasing = T))), WR.surv)
    }
    if(length(unique(inp[,groups])) < 2){
      inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""), " ", 1,sep = "")
      write.table(inp$inp_final,"WRinp.inp",row.names = F, col.names = F, quote = F)
      WRinp <- convert.inp("WRinp.inp")
      WR.process <- process.data(WRinp, model="CJS", begin.time=1) 
      
      WR.ddl <- make.design.data(WR.process)
      
      WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
      
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
      
      WR.surv <- round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1)
      WR.surv <- rbind(WR.surv, round(WR.mark.rel$results$real[seq(from=1,to=length(groups)*2,by = 2),c("estimate", "se", "lcl", "ucl")] * 100,1))
      WR.surv$Detection_efficiency <- NA
      WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)
      
      WR.surv <- cbind(c("ALL", groups), WR.surv)
    }
    
    
    colnames(WR.surv) <- c("Release", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
    
    print(kable(WR.surv, row.names = F, "html", caption = "3.1 Minimum survival to Tower Bridge (using CJS survival model). If Yolo Bypass Weirs are overtopping during migration, fish may have taken that route, and therefore this is a minimum estimate of survival") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
  }
}
3.1 Minimum survival to Tower Bridge (using CJS survival model). If Yolo Bypass Weirs are overtopping during migration, fish may have taken that route, and therefore this is a minimum estimate of survival
Release Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%)
NA NO DETECTIONS YET NA NA NA NA
try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

route_results_possible <- F
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  results_short <- data.frame("Measure"=NA, "Estimate"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
  colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
  print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of entering Georgiana Slough") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
} else {
  
  ## Only do survival to Georg split for now
  test2 <- detects_study[detects_study$general_location %in% c("ButteBrRT","TowerBridge", "I80-50_Br", "Sac_BlwGeorgiana", "Sac_BlwGeorgiana2", "Georgiana_Slough1", "Georgiana_Slough2"),]
  
  ## EXCEPTIONALLY IN 2021, REMOVE ALL DETECTIONS AFTER 4/7/21 01:00, THIS IS WHEN GEORG 2.1 AND 2.2 WERE STOLEN
  test2 <- detects_study[which(detects_study$DateTime_PST < as.POSIXct("2021-04-07 01:00", tz = "Etc/GMT+8")),]
  
  ## We can only do multistate model if there is at least one detection in each route
  
  if(nrow(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2"),]) == 0 |
     nrow(test2[test2$general_location %in% c("Georgiana_Slough1", "Georgiana_Slough2"),]) == 0){
    results_short <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
    colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of entering Georgiana Slough") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
  }else{
    
    ## Make tagcode character
    study_tagcodes$TagCode <- as.character(study_tagcodes$TagCode)
    ## Make a crosstab query with frequencies for all tag/location combination
    test2$general_location <- factor(test2$general_location, levels = c("ButteBrRT","TowerBridge", "I80-50_Br", "Sac_BlwGeorgiana", "Sac_BlwGeorgiana2", "Georgiana_Slough1", "Georgiana_Slough2"))
    test2$TagCode <- factor(test2$TagCode, levels = study_tagcodes$TagCode)
    mytable <- table(test2$TagCode, test2$general_location) # A will be rows, B will be columns
    
    ## Change all frequencies bigger than 1 to 1. Here you could change your minimum cutoff to 2 detections, and then make another command that changes all detections=1 to 0
    mytable[mytable>0] <- "A"
    
    ## Order in order of rkm
    mytable2 <- mytable[, c("ButteBrRT","TowerBridge", "I80-50_Br", "Sac_BlwGeorgiana", "Sac_BlwGeorgiana2", "Georgiana_Slough1", "Georgiana_Slough2")]
    
    ## Now sort the crosstab rows alphabetically
    mytable2 <- mytable2[order(row.names(mytable2)),]
    
    mytable2[which(mytable2[, "Sac_BlwGeorgiana"]=="A"), "Sac_BlwGeorgiana"] <- "A"
    mytable2[which(mytable2[, "Sac_BlwGeorgiana2"]=="A"), "Sac_BlwGeorgiana2"] <- "A"
    mytable2[which(mytable2[, "Georgiana_Slough1"]=="A"), "Georgiana_Slough1"] <- "B"
    mytable2[which(mytable2[, "Georgiana_Slough2"]=="A"), "Georgiana_Slough2"] <- "B"
    
    ## Make a crosstab query with frequencies for all weekly Release groups
    #test2$Release <- factor(test2$Release)
    #mytable3 <- table(test2$TagCode, test2$Release) # A will be rows, B will be columns
    
    ## Change all frequencies bigger than 1 to 1. Here you could change your minimum cutoff to 2 detections, and then make another command that changes all detections=1 to 0
    #mytable3[mytable3>0] <- 1
    
    ## Order in order of rkm
    #mytable4 <- mytable3[, order(colnames(mytable3))]
    
    ## Now sort the crosstab rows alphabetically
    #mytable4 <- mytable4[order(row.names(mytable4)),]
    
    ## Now order the study_tagcodes table the same way
    study_tagcodes <- study_tagcodes[order(study_tagcodes$TagCode),]
    
    ## Paste together (concatenate) the data from each column of the crosstab into one string per row, add to tagging_meta.
    ## For this step, make sure both are sorted by FishID
    study_tagcodes$inp_part1 <- apply(mytable2[,1:3],1,paste,collapse="")
    study_tagcodes$inp_partA <- apply(mytable2[,4:5],1,paste,collapse="")
    study_tagcodes$inp_partB <- apply(mytable2[,6:7],1,paste,collapse="")
    #study_tagcodes$inp_group <- apply(mytable4,1,paste,collapse=" ")
    
    ## We need to have a way of picking which route to assign to a fish if it was detected by both georg and blw-georg recvs
    ## We will say that the last detection at that junction is what determines the route it took
    
    ## find last detection at each genloc
    departure <- aggregate(list(depart = test2$DateTime_PST), by = list(TagCode = test2$TagCode, last_location = test2$general_location), FUN = max)
    ## subset for just juncture locations
    departure <- departure[departure$last_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2", "Georgiana_Slough1", "Georgiana_Slough2"),]
    ## Find genloc of last known detection per tag
    last_depart <- aggregate(list(depart = departure$depart), by = list(TagCode = departure$TagCode), FUN = max)
    
    last_depart1 <- merge(last_depart, departure)
    study_tagcodes <- merge(study_tagcodes, last_depart1[,c("TagCode", "last_location")], by = "TagCode", all.x = T)
    
    ## Assume that the Sac is default pathway, and for fish that were detected in neither route, it would get a "00" in inp so doesn't matter anyway
    study_tagcodes$inp_final <- paste("A",study_tagcodes$inp_part1, study_tagcodes$inp_partA," 1 ;", sep = "")
    
    ## now put in exceptions...fish that were seen in georgiana last
    study_tagcodes[study_tagcodes$last_location %in% c("Georgiana_Slough1", "Georgiana_Slough2"), "inp_final"] <- paste("A",study_tagcodes[study_tagcodes$last_location %in% c("Georgiana_Slough1", "Georgiana_Slough2"), "inp_part1"], study_tagcodes[study_tagcodes$last_location %in% c("Georgiana_Slough1", "Georgiana_Slough2"), "inp_partB"]," 1 ;", sep = "")
    
    ## At this point, some fish might not have been deemed to ever take a route based on last visit analysis. If so, model can't be run
    
    if(any(grepl(pattern = "A", study_tagcodes$inp_final)==T) & any(grepl(pattern = "B", study_tagcodes$inp_final)==T)){
      
      write.table(study_tagcodes$inp_final,"WRinp_multistate.inp",row.names = F, col.names = F, quote = F)
      
      WRinp <- convert.inp("WRinp_multistate.inp")
      
      dp <- process.data(WRinp, model="Multistrata") 
      
      ddl <- make.design.data(dp)
      
      #### p ####
      # Can't be seen at 2B or 3B or 4B (butte, tower or I80)
      ddl$p$fix=NA
      ddl$p$fix[ddl$p$stratum == "B" & ddl$p$time %in% c(2,3,4)]=0
      
      #### Psi ####
      # Only 1 transition allowed:
      # from A to B at time interval 4 to 5
      
      ddl$Psi$fix=0
      # A to B can only happen for interval 3-4
      ddl$Psi$fix[ddl$Psi$stratum=="A"&
                    ddl$Psi$tostratum=="B" & ddl$Psi$time==4]=NA
      
      #### Phi a.k.a. S ####
      ddl$S$fix=NA
      # None in B for reaches 1,2,3,4 and fixing it to 1 for 5 (between two georg lines). All getting fixed to 1
      ddl$S$fix[ddl$S$stratum=="B" & ddl$S$time %in% c(1,2,3,4,5)]=1
      
      # For route A, fixing it to 1 for 5 (between two blw_georg lines)
      ddl$S$fix[ddl$S$stratum=="A" & ddl$S$time==5]=1
      ## We use -1 at beginning of formula to remove intercept. This is because different routes probably shouldn't share the same intercept
      
      p.timexstratum=list(formula=~-1+stratum:time)
      Psi.stratumxtime=list(formula=~-1+stratum:time)
      S.stratumxtime=list(formula=~-1+stratum:time)
      
      ## Run model a first time
      S.timexstratum.p.timexstratum.Psi.timexstratum=mark(dp,ddl, model.parameters=list(S=S.stratumxtime,p= p.timexstratum,Psi=Psi.stratumxtime), realvcv = T, silent = T, output = F)
      
      ## Identify any parameter estimates at 1, which would likely have bad SE estimates.
      profile.intervals <- which(S.timexstratum.p.timexstratum.Psi.timexstratum$results$real$estimate %in% c(0,1) & !S.timexstratum.p.timexstratum.Psi.timexstratum$results$real$fixed == "Fixed")
      
      ## Rerun model using profile interval estimation for the tricky parameters
      S.timexstratum.p.timexstratum.Psi.timexstratum=mark(dp,ddl, model.parameters=list(S=S.stratumxtime,p= p.timexstratum,Psi=Psi.stratumxtime), realvcv = T, profile.int = profile.intervals, silent = T, output = F)
      
      results <- S.timexstratum.p.timexstratum.Psi.timexstratum$results$real
      
      results_short <- results[rownames(results) %in% c("S sA g1 c1 a0 o1 t1",
                                                        "S sA g1 c1 a1 o2 t2",
                                                        "S sA g1 c1 a2 o3 t3",
                                                        "S sA g1 c1 a3 o4 t4",
                                                        "p sA g1 c1 a1 o1 t2",
                                                        "p sA g1 c1 a2 o2 t3",
                                                        "p sA g1 c1 a3 o3 t4",
                                                        "p sA g1 c1 a4 o4 t5",
                                                        "p sB g1 c1 a4 o4 t5",
                                                        "Psi sA toB g1 c1 a3 o4 t4"
      ),]
      
      
      results_short <- round(results_short[,c("estimate", "se", "lcl", "ucl")] * 100,1)
      
      ## Now find estimate and CIs for AtoA route at junction
      Psilist=get.real(S.timexstratum.p.timexstratum.Psi.timexstratum,"Psi",vcv=TRUE)  
      Psivalues=Psilist$estimates
      
      routes <- TransitionMatrix(Psivalues[Psivalues$time==4 & Psivalues$cohort==1,],vcv.real=Psilist$vcv.real)
      
      
      
      
      
      results_short$Measure <- c("Survival from release to Butte City","Survival from Butte City to TowerBridge (minimum estimate since fish may have taken Yolo Bypass)", "Survival from TowerBridge to I80-50_Br", "% arrived from I80-50_Br to Georgiana Slough confluence (not survival because fish may have taken Sutter/Steam)","Detection probability at Butte City",
                                 "Detection probability at TowerBridge", "Detection probability at I80-50_Br", "Detection probability at Blw_Georgiana", "Detection probability at Georgiana Slough",
                                 "Routing probability into Georgiana Slough (Conditional on fish arriving to junction)")
      
      results_short <- results_short[,c("Measure", "estimate", "se", "lcl", "ucl")]
      colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
      
      print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of entering Georgiana Slough UP TO 4/7/2021, AFTER WHICH ESTIMATES AREN'T POSSIBLE DUE TO THEFT OF EQUIPMENT") %>%
              kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
      
      route_results_possible <- T
      
    } else {
      results_short <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
      colnames(results_short) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
      print(kable(results_short, row.names = F, "html", caption = "3.2 Reach-specific survival and probability of entering Georgiana Slough") %>%
              kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
    }
  }
}
3.2 Reach-specific survival and probability of entering Georgiana Slough
Measure Estimate SE 95% lower C.I. 95% upper C.I.
NA NO DETECTIONS YET NA NA NA
##____________________________________________________________________________
## If you don't have access to local files, uncomment and run next lines of code

#download.file("https://raw.githubusercontent.com/CalFishTrack/real-time/master/data/georg.png",destfile = "georg.png", quiet = T, mode = "wb")

##________________________________________________________________________________


georg <- readPNG("georg.png")
par(mar=c(2,0,0,0))
#Set up the plot area
plot(1:2, type='n', xlab="", ylab="", xaxt = "n", yaxt = "n")

#Get the plot information so the image will fill the plot box, and draw it
lim <- par()
rasterImage(georg, lim$usr[1], lim$usr[3], lim$usr[2], lim$usr[4])
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
    legend(x = 1.55,y = 1.6,legend =  "No detections yet",col = "white", box.col = "light gray", bg = "light gray") 
    legend(x = 1.55,y = 1.45,legend =  "No detections yet",col = "white", box.col = "light gray", bg = "light gray")
}else if (route_results_possible == F){
    legend(x = 1.55,y = 1.6,legend =  "Too few detections",col = "white", box.col = "light gray", bg = "light gray") 
    legend(x = 1.55,y = 1.45,legend =  "Too few detections",col = "white", box.col = "light gray", bg = "light gray") 
}else{  
  legend(x = 1.55,y = 1.6,legend =  paste(round(routes$TransitionMat["A","A"],3)*100,"% (",round(routes$lcl.TransitionMat["A","A"],3)*100,"-",round(routes$ucl.TransitionMat["A","A"],3)*100,")", sep =""),col = "white", box.col = "light gray", bg = "light gray")
  legend(1.55,1.45, legend =  paste(round(routes$TransitionMat["A","B"],3)*100,"% (",round(routes$lcl.TransitionMat["A","B"],3)*100,"-",round(routes$ucl.TransitionMat["A","B"],3)*100,")", sep =""), box.col = "light gray", bg = "light gray")
}  
  mtext(text = "3.3 Routing Probabilities at Georgiana Slough Junction (with 95% C.I.s)", cex = 1.3, side = 1, line = 0.2, adj = 0)
  mtext(text = "UP TO 4/7/2021. BEYOND THAT ESTIMATES AREN'T POSSIBLE DUE TO THEFT OF EQUIPMENT", cex = 1, side = 1.2, line = 1.2, adj = 0)

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  plot(1:2, type = "n",xaxt = "n", yaxt = "n", xlab = "Range of days study fish were present at Georgiana Sl Junction", ylab = "Routing probability into Georgiana Slough at the junction")
  text(1.5,1.5, labels = "NO DETECTIONS YET", cex = 2)
}else if (route_results_possible == F){
  plot(1:2, type = "n",xaxt = "n", yaxt = "n", xlab = "Range of days study fish were present at Georgiana Sl Junction", ylab = "Routing probability into Georgiana Slough at the junction")
  text(1.5,1.5, labels = "TOO FEW DETECTIONS", cex = 2)
}else{  
  
  library(repmis)
  
  trytest <- try(source_data("https://code.usgs.gov/crrl_qfes/Enhanced_Acoustic_Telemetry_Project/raw/master/EAT_data_2021.Rdata?raw=True"))
  
  if (inherits(trytest, "try-error")){
    plot(1:2, type = "n",xaxt = "n", yaxt = "n", xlab = "Range of days study fish were present at Georgiana Sl Junction", ylab = "Routing probability into Georgiana Slough at the junction")
    text(1.5,1.5, labels = "ERROR DOWNLOADING STARS", cex = 2)
  }else{
  
    ## first, find min and max arrivals at georg for a study
    min_georg <- as.Date(format(min(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2","Georgiana_Slough1", "Georgiana_Slough2"),"DateTime_PST"]), "%Y-%m-%d"))
    max_georg <- as.Date(format(max(test2[test2$general_location %in% c("Sac_BlwGeorgiana", "Sac_BlwGeorgiana2","Georgiana_Slough1", "Georgiana_Slough2"),"DateTime_PST"]), "%Y-%m-%d"))
    
    psi_study <- psi_GeoCond[psi_GeoCond$Date <= max_georg & psi_GeoCond$Date >=min_georg-1,]
    
    plot(psi_study$Date, psi_study$psi_geo.50, ylim = c(0,1), xlim = c(min_georg, max_georg), type = "n", xaxt = "n", xlab = "Range of days study fish were present at Georgiana Sl Junction", ylab = "Routing probability into Georgiana Slough at the junction")
    polygon(c(psi_study$Date, rev(psi_study$Date)), 
            c(psi_study$psi_geo.10,rev(psi_study$psi_geo.90)), density = 200, col ='grey90')
    lines(psi_study$Date, psi_study$psi_geo.50, lty = 3)
    points(mean(psi_study$Date), tail(results_short$Estimate,1)/100, pch = 16, cex = 1.3)
    arrows(mean(psi_study$Date), tail(results_short$`95% lower C.I.`,1)/100, mean(psi_study$Date), tail(results_short$`95% upper C.I.`,1)/100, length=0.05, angle=90, code=3)
    axis(side=1, at=psi_study$Date, labels=format(psi_study$Date, '%b-%d'))
    legend("topright", legend = c('STARS daily predictions during study (w/ 90% CI)', 'Empirical estimate over study period (w/ 95% CI)'), 
           bty = "n",
           col = c("black","black"),
           lty = c(3,1),
           fill = c("grey90", NA),
           border = c(NA,NA),
           pch = c(NA,16),
           seg.len =0.8,
           cex= 1.2
    )
  }
}  
3.4 STARS prediction vs. empirical estimate of Routing Probability at Georgiana Slough Junction

3.4 STARS prediction vs. empirical estimate of Routing Probability at Georgiana Slough Junction

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))
  
try(benicia <- read.csv("benicia_surv.csv", stringsAsFactors = F))

detects_benicia <- detects_study[detects_study$general_location %in% c("Benicia_west", "Benicia_east"),]
endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))

if (nrow(detects_benicia) == 0){
  if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
    WR.surv <- data.frame("Release"="ALL", "estimate"=0, "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
  }else{
    WR.surv <- data.frame("Release"=NA, "estimate"="NO DETECTIONS YET", "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
  }
  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
  print(kable(WR.surv1, row.names = F, "html", caption = "3.5 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))  
}else if (length(table(detects_benicia$general_location)) == 1){
  if(as.numeric(difftime(Sys.time(), min(detects_study$RelDT), units = "days"))>30){
    WR.surv <- data.frame("Release"="ALL", "estimate"=round(length(unique(detects_benicia$TagCode))/length(unique(detects_study$TagCode))*100,1), "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
  }else{
    WR.surv <- data.frame("Release"=NA, "estimate"="NOT ENOUGH DETECTIONS", "se"=NA, "lcl"=NA, "ucl"=NA, "Detection_efficiency"=NA)
  }
    WR.surv1 <- WR.surv
    colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")
    print(kable(WR.surv1, row.names = F, "html", caption = "3.5 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
} else {  
  ## Only do survival to Benicia here
  test3 <- detects_study[which(detects_study$river_km < 53),]
  
  ## Create inp for survival estimation
  
  inp <- as.data.frame(reshape2::dcast(test3, TagCode ~ river_km, fun.aggregate = length))
  
  ## Sort columns by river km in descending order
  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1
  
  inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]

  inp <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)
  
  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]
  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0] <- 1
  
  inp <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))
  groups_w_detects <- names(table(test3$Release))

  inp[,groups] <- 0
  for (i in groups) {
    inp[as.character(inp$Release) == i, i] <- 1
  }

  inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")
  
  
  if(length(groups) > 1){
  ## make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 
    
    WR.ddl <- make.design.data(WR.process)
    
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    
    inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
    inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)
    if(length(groups_w_detects) > 1){
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel") 
    
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)
    }else{  
      WR.process <- process.data(inp.df, model="CJS", begin.time=1) 
    
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    }
    WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- cbind(Release = groups_w_detects, round(WR.mark.rel$results$real[seq(from=1,to=length(groups_w_detects)*2,by = 2),c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
    WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
    WR.surv <- rbind(WR.surv, WR.surv.rel)
    
  }else{
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 
    
      
    WR.ddl <- make.design.data(WR.process)
    
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)

    WR.surv <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[1,c("estimate", "se", "lcl", "ucl")] * 100,1))
    
  }
  WR.surv$Detection_efficiency <- NA
  WR.surv[1,"Detection_efficiency"] <- round(WR.mark.all$results$real[gen_loc_sites+1,"estimate"] * 100,1)

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.", "Detection efficiency (%)")

  print(kable(WR.surv1, row.names = F, "html", caption = "3.5 Minimum survival to Benicia Bridge East Span (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))    
  
}
3.5 Minimum survival to Benicia Bridge East Span (using CJS survival model)
Release Group Survival (%) SE 95% lower C.I. 95% upper C.I. Detection efficiency (%)
ALL 0 NA NA NA NA
if(exists("benicia")==T  & is.numeric(WR.surv1[1,2])){
  ## Find mean release time per release group, and ALL
  reltimes <- aggregate(list(RelDT = study_tagcodes$release_time), by = list(Release = study_tagcodes$Release), FUN = mean)
  reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$release_time)))

  ## Assign whether the results are tentative or final
  quality <- "tentative"
  if(endtime < as.Date(format(Sys.time(), "%Y-%m-%d"))) { quality <- "final"}

  WR.surv <- merge(WR.surv, reltimes, by = "Release", all.x = T)
  
  WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = '1970-01-01')
  benicia$RelDT <- as.POSIXct(benicia$RelDT)
  ## remove old benicia record for this studyID
  benicia <- benicia[!benicia$StudyID == unique(detects_study$Study_ID),]
  
  benicia <- rbind(benicia, data.frame(WR.surv, StudyID = unique(detects_study$Study_ID), data_quality = quality))
  
  write.csv(benicia, "benicia_surv.csv", row.names = F, quote = F) 
}
try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

try(Delta <- read.csv("Delta_surv.csv", stringsAsFactors = F))

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
    WR.surv1 <- data.frame("Measure"=NA, "Estimate"="NO DETECTIONS YET", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
    colnames(WR.surv1) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(WR.surv1, row.names = F, "html", caption = "3.6 Minimum through-Delta survival: City of Sacramento to Benicia (using CJS survival model)") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
}else{
  
  test4 <- detects_study[detects_study$general_location %in% c("TowerBridge", "I80-50_Br", "Benicia_west", "Benicia_east"),]
 
  if(nrow(test4[test4$general_location =="Benicia_west",]) == 0 |
     nrow(test4[test4$general_location =="Benicia_east",]) == 0){
    WR.surv1 <- data.frame("Measure"=NA, "Estimate"="NOT ENOUGH DETECTIONS", "SE"=NA, "95% lower C.I."=NA, "95% upper C.I."=NA)
    colnames(WR.surv1) <- c("Measure", "Estimate", "SE", "95% lower C.I.", "95% upper C.I.")
    print(kable(WR.surv1, row.names = F, "html", caption = "3.6 Minimum through-Delta survival: City of Sacramento to Benicia (using CJS survival model)") %>%
            kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))

  }else{
  
  inp <- as.data.frame(reshape2::dcast(test4, TagCode ~ general_location, fun.aggregate = length))
  
  ## add together detections at Tower and I80 to ensure good detection entering Delta
  if("I80-50_Br" %in% colnames(inp) & "TowerBridge" %in% colnames(inp)){
    inp$`I80-50_Br` <- inp$`I80-50_Br` + inp$TowerBridge
  }else if("TowerBridge" %in% colnames(inp)){
    inp$`I80-50_Br` <- inp$TowerBridge
  }
  ## Sort columns by river km in descending order, this also removes TowerBridge, no longer needed
  inp <- inp[,c("TagCode","I80-50_Br", "Benicia_east", "Benicia_west")]
  
  # Count number of genlocs
  gen_loc_sites <- ncol(inp)-1
  
  inp <- inp[,c(1,order(names(inp[,2:(gen_loc_sites+1)]), decreasing = T)+1)]

  inp <- merge(study_tagcodes, inp, by = "TagCode", all.x = T)
  
  inp2 <- inp[,(ncol(inp)-gen_loc_sites+1):ncol(inp)]
  inp2[is.na(inp2)] <- 0
  inp2[inp2 > 0] <- 1
  
  inp <- cbind(inp, inp2)
  groups <- as.character(sort(unique(inp$Release)))
  groups_w_detects <- names(table(detects_study[which(detects_study$river_km < 53),"Release"]))

  inp[,groups] <- 0
  for (i in groups) {
    inp[as.character(inp$Release) == i, i] <- 1
  }

  inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""),sep="")
  # if(length(groups) > 1){
  #   inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""), " ",apply(inp[,groups], 1, paste, collapse=" ")," ;",sep = "")
  # }else{
  #   inp$inp_final <- paste("1",apply(inp2, 1, paste, collapse=""), " ",inp[,groups]," ;",sep = "")
  # }
  
  
  
  if(length(groups) > 1){
  ## make sure factor levels have a release that has detections first. if first release in factor order has zero #detectins, model goes haywire
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = inp$Release, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 
    
    WR.ddl <- make.design.data(WR.process)
    
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    
    inp.df <- inp.df[inp.df$rel %in% groups_w_detects,]
    inp.df$rel <- factor(inp.df$rel, levels = groups_w_detects)
    if(length(groups_w_detects) > 1){
      WR.process <- process.data(inp.df, model="CJS", begin.time=1, groups = "rel") 
    
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)
    }else{  
      WR.process <- process.data(inp.df, model="CJS", begin.time=1) 
    
      WR.ddl <- make.design.data(WR.process)
      WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
    }
    WR.surv <- cbind(Release = "ALL",round(WR.mark.all$results$real[2,c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- cbind(Release = groups_w_detects, round(WR.mark.rel$results$real[seq(from=2,to=length(groups_w_detects)*3,by = 3),c("estimate", "se", "lcl", "ucl")] * 100,1))
    WR.surv.rel <- merge(WR.surv.rel, data.frame(Release = groups), all.y = T)
    WR.surv.rel[is.na(WR.surv.rel$estimate),"estimate"] <- 0
    WR.surv <- rbind(WR.surv, WR.surv.rel)
    
  }else{
    inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, stringsAsFactors = F)

    WR.process <- process.data(inp.df, model="CJS", begin.time=1) 
    
      
    WR.ddl <- make.design.data(WR.process)
    
    WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)

    WR.surv <- cbind(Release = c("ALL", groups),round(WR.mark.all$results$real[2,c("estimate", "se", "lcl", "ucl")] * 100,1))
    
  }

#   
#   
# #  write.table(inp$inp_final,"WRinp.inp",row.names = F, col.names = F, quote = F)
#   
#   if(length(groups) > 1){
#     
#     inp.df <- data.frame(ch = as.character(inp$inp_final), freq = 1, rel = factor(inp$Release, levels = names(sort(table(test$Release),decreasing = T))), stringsAsFactors = F)
# 
#     WRinp <- convert.inp("WRinp.inp", group.df=data.frame(rel=groups))
#     WR.process <- process.data(WRinp, model="CJS", begin.time=1, groups = "rel") 
#     
#     WR.ddl <- make.design.data(WR.process)
#     
#     WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
#     
#     WR.mark.rel <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time*rel),p=list(formula=~time)), silent = T, output = F)
#     
#     WR.surv <- round(WR.mark.all$results$real[2,c("estimate", "se", "lcl", "ucl")] * 100,1)
#     WR.surv <- rbind(WR.surv, round(WR.mark.rel$results$real[seq(from=2,to=length(groups)*3,by = 3),c("estimate", "se", "lcl", "ucl")] * 100,1))
#     
#   }else{
#     
#     WRinp <- convert.inp("WRinp.inp")
#     WR.process <- process.data(WRinp, model="CJS", begin.time=1) 
#     
#       
#     WR.ddl <- make.design.data(WR.process)
#     
#     WR.mark.all <- mark(WR.process, WR.ddl, model.parameters=list(Phi=list(formula=~time),p=list(formula=~time)), silent = T, output = F)
# 
#     WR.surv <- round(WR.mark.all$results$real[2,c("estimate", "se", "lcl", "ucl")] * 100,1)
#     
#   }
  
    
#  WR.surv <- cbind(Release = c("ALL", groups), WR.surv)

  WR.surv1 <- WR.surv
  colnames(WR.surv1) <- c("Release Group", "Survival (%)", "SE", "95% lower C.I.", "95% upper C.I.")

  print(kable(WR.surv1, row.names = F, "html", caption = "3.6 Minimum through-Delta survival: City of Sacramento to Benicia (using CJS survival model)") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))  
  
  if(exists("Delta")==T & is.numeric(WR.surv1[1,2])){
    reltimes <- aggregate(list(RelDT = study_tagcodes$release_time), by = list(Release = study_tagcodes$Release), FUN = mean)
    reltimes <- rbind(reltimes, data.frame(Release = "ALL", RelDT = mean(study_tagcodes$release_time)))
  
    WR.surv <- merge(WR.surv, reltimes, by = "Release", all.x = T)
  
    WR.surv$RelDT <- as.POSIXct(WR.surv$RelDT, origin = '1970-01-01')
    
    Delta$RelDT <- as.POSIXct(Delta$RelDT)
    ## remove old benicia record for this studyID
    Delta <- Delta[!Delta$StudyID %in% unique(detects_study$Study_ID),]
    
    Delta <- rbind(Delta, data.frame(WR.surv, StudyID = unique(detects_study$Study_ID), data_quality = quality))
    
    write.csv(Delta, "Delta_surv.csv", row.names = F, quote = F) 
  }
  }
}
3.6 Minimum through-Delta survival: City of Sacramento to Benicia (using CJS survival model)
Measure Estimate SE 95% lower C.I. 95% upper C.I.
NA NO DETECTIONS YET NA NA NA



4. Detections statistics at all realtime receivers


try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"
} else {

  arrivals <- aggregate(list(DateTime_PST = detects_study$DateTime_PST), by = list(general_location = detects_study$general_location, TagCode = detects_study$TagCode), FUN = min)
  
  tag_stats <- aggregate(list(First_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = min)
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Mean_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = mean), 
                     by = c("general_location"))
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Last_arrival = arrivals$DateTime_PST), 
                         by= list(general_location = arrivals$general_location),
                         FUN = max), 
                     by = c("general_location"))
  tag_stats <- merge(tag_stats, 
                     aggregate(list(Fish_count = arrivals$TagCode), 
                         by= list(general_location = arrivals$general_location), 
                         FUN = function(x) {length(unique(x))}), 
                     by = c("general_location"))
  tag_stats$Percent_arrived <- round(tag_stats$Fish_count/nrow(study_tagcodes) * 100,2)
      
  tag_stats <- merge(tag_stats, unique(detects_study[,c("general_location", "river_km")]))
  
  tag_stats <- tag_stats[order(tag_stats$river_km, decreasing = T),]
  
  tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")
  
  tag_stats <- tag_stats[is.na(tag_stats$First_arrival)==F,]

  print(kable(tag_stats, row.names = F, 
              caption = "4.1 Detections for all releases combined",
              "html") %>%
          kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
  
  for (j in sort(unique(study_tagcodes$Release))) {
    
    if(nrow(detects_study[detects_study$Release == j,]) > 0 ) {
    
      temp <- detects_study[detects_study$Release == j,]
      
        arrivals1 <- aggregate(list(DateTime_PST = temp$DateTime_PST), by = list(general_location = temp$general_location, TagCode = temp$TagCode), FUN = min)
  
      rel_count <- nrow(study_tagcodes[study_tagcodes$Release == j,])
  
      tag_stats1 <- aggregate(list(First_arrival = arrivals1$DateTime_PST), 
                             by= list(general_location = arrivals1$general_location), 
                             FUN = min)
      tag_stats1 <- merge(tag_stats1, 
                         aggregate(list(Mean_arrival = arrivals1$DateTime_PST), 
                             by= list(general_location = arrivals1$general_location), 
                             FUN = mean), 
                         by = c("general_location"))
      tag_stats1 <- merge(tag_stats1, 
                   aggregate(list(Last_arrival = arrivals1$DateTime_PST), 
                       by= list(general_location = arrivals1$general_location), 
                       FUN = max), 
                   by = c("general_location"))
      tag_stats1 <- merge(tag_stats1, 
                         aggregate(list(Fish_count = arrivals1$TagCode), 
                                   by= list(general_location = arrivals1$general_location), 
                                   FUN = function(x) {length(unique(x))}), 
                         by = c("general_location"))
      
      tag_stats1$Percent_arrived <- round(tag_stats1$Fish_count/rel_count * 100,2)
    
      tag_stats1 <- merge(tag_stats1, unique(detects_study[,c("general_location", "river_km")]))
    
      tag_stats1 <- tag_stats1[order(tag_stats1$river_km, decreasing = T),]
      
      tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")] <- format(tag_stats1[,c("First_arrival", "Mean_arrival", "Last_arrival")], tz = "Etc/GMT+8")
      
      tag_stats1 <- tag_stats1[is.na(tag_stats1$First_arrival)==F,]
      
      final_stats <- kable(tag_stats1, row.names = F, 
            caption = paste("4.2 Detections for",j,"release groups", sep = " "),
            "html")
      
      print(kable_styling(final_stats, bootstrap_options = c("striped", "hover", "condensed", "responsive", "bordered"), full_width = F, position = "left"))
      
    } else {
      cat("\n\n\\pagebreak\n")
      print(paste("No detections for",j,"release group yet", sep=" "), quote = F)
      cat("\n\n\\pagebreak\n")
    }
  }
}

[1] “No detections yet”


4.3 Fish arrivals per day (“NA” means receivers were non-operational)

try(setwd(paste(file.path(Sys.getenv("USERPROFILE"),"Desktop",fsep="\\"), "\\Real-time data massaging\\products", sep = "")))

## THIS CODE CHUNK WILL NOT WORK IF USING ONLY ERDDAP DATA, REQUIRES ACCESS TO LOCAL FILES
if (nrow(detects_study[is.na(detects_study$DateTime_PST)==F,]) == 0){
  "No detections yet"
} else {
  arrivals <- aggregate(list(DateTime_PST = detects_study$DateTime_PST), by = list(general_location = detects_study$general_location, TagCode = detects_study$TagCode), FUN = min)
    
  beacon_by_day <- fread("beacon_by_day.csv", stringsAsFactors = F)
  beacon_by_day$day <- as.Date(beacon_by_day$day)
  
  gen_locs <- read.csv("realtime_locs.csv", stringsAsFactors = F)
  
  arrivals$day <- as.Date(format(arrivals$DateTime_PST, "%Y-%m-%d", tz = "Etc/GMT+8"))
  
  arrivals_per_day <- aggregate(list(New_arrivals = arrivals$TagCode), by = list(day = arrivals$day, general_location = arrivals$general_location), length)
  arrivals_per_day$day <- as.Date(arrivals_per_day$day)

  ## Now subset to only look at data for the correct beacon for that day
  beacon_by_day <- as.data.frame(beacon_by_day[which(beacon_by_day$TagCode == beacon_by_day$beacon),])
  
  endtime <- min(as.Date(format(Sys.time(), "%Y-%m-%d")), max(as.Date(detects_study$release_time)+(as.numeric(detects_study$tag_life)*1.5)))
  ## Now only keep beacon by day for days since fish were released
  beacon_by_day <- beacon_by_day[beacon_by_day$day >= as.Date(min(study_tagcodes$release_time)) & beacon_by_day$day <= endtime,]  
  
  beacon_by_day <- merge(beacon_by_day, gen_locs[,c("location", "general_location","rkm")], by = "location", all.x = T)

  arrivals_per_day <- merge(unique(beacon_by_day[,c("general_location", "day", "rkm")]), arrivals_per_day, all.x = T, by = c("general_location", "day"))
  
  arrivals_per_day$day <- factor(arrivals_per_day$day)
  
  ## Remove bench test and other NA locations
  arrivals_per_day <- arrivals_per_day[!arrivals_per_day$general_location == "Bench_test",]
  arrivals_per_day <- arrivals_per_day[is.na(arrivals_per_day$general_location) == F,]
  
  ## Change order of data to plot decreasing river_km
  arrivals_per_day <- arrivals_per_day[order(arrivals_per_day$rkm, decreasing = T),]
  arrivals_per_day$general_location <- factor(arrivals_per_day$general_location, unique(arrivals_per_day$general_location))
  
  # 
  # ggplot(data=arrivals_per_day, aes(x=general_location, y=fct_rev(as_factor(day)))) +
  # geom_tile(fill = "lightgray", color = "black") + 
  # geom_text(aes(label=New_arrivals)) +
  # labs(x="General Location", y = "Date") +
  # theme(panel.background = element_blank(), axis.text.x = element_text(angle = 90, hjust = 1))
    crosstab <- xtabs(formula = arrivals_per_day$New_arrivals ~ arrivals_per_day$day + arrivals_per_day$general_location, addNA =T)
  crosstab[is.na(crosstab)] <- ""
  crosstab[crosstab==0] <- NA
  crosstab <- as.data.frame.matrix(crosstab)
  #colnames(crosstab) <- c("Butte Br", "Tower Br", "I8050 Br", "Old River", "Middle River", "CVP Tanks", "Georg Slough1", "Sac_Blw Georg1", "Georg Slough2", "Sac_Blw Georg2", "Benicia East", "Benicia West")

 kable(crosstab, align = "c") %>%
  kable_styling(c("striped", "condensed"), font_size = 11, full_width = F, position = "left") %>%
  #row_spec(0, angle = -45) %>%
  column_spec(column = 1:ncol(crosstab),width_min = "50px",border_left = T, border_right = T) %>%
  column_spec(1, bold = T, width_min = "75px")%>%
  scroll_box(height = "700px")
}

[1] “No detections yet”

rm(list = ls())
cleanup(ask = F)



For questions or comments, please contact